CHAPTER 19 Circles

19-1. Arcs, Angles, and Tangents

In a plane, a **circle** is the set of all points equidistant from a given point called the **center**. It follows from the definition of a circle that **all radii are equal in measure**.

A circle is usually named by its center. The circle at the right is called circle O. (symbolized as $\bigcirc O$)

A **chord** is a segment whose endpoints lie on a circle.

A **secant** is a line that contains a chord.

A **tangent** is a line in the plane of a circle, and intersects the circle at exactly one point: the **point of tangency**.

A **central angle** is an angle whose vertex is the center of the circle. An arc is a part of a circle. The measure of a **minor arc** is the measure of its central angle. The measure of a minor arc is less than 180.

The measure of a **semicircle** is 180.

The measure of a **major arc** is 360 minus the measure of its minor arc.

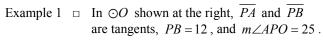
The measure of an arc formed by two adjacent arcs is the sum of the measure of the two arcs. $\widehat{mPQR} = \widehat{mPQ} + \widehat{mQR}$

Theorems - Tangent Lines

If a line is tangent to a circle, then the line is perpendicular to the radius at the point of tangency.

$$\overline{PA} \perp \overline{OA}$$
 and $\overline{PB} \perp \overline{OB}$

Tangents to a circle from the same exterior point are congruent. PA = PB



- a. Find the measure of $\angle POA$.
- b. Find the length of PA.
- c. Find the radius of $\odot O$.

Solution
$$\Box$$
 a. $\overline{PA} \perp \overline{OA}$

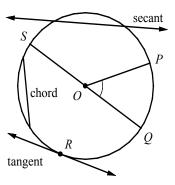
$$m\angle PAO = 90$$

 $m\angle POA + m\angle APO + m\angle PAO = 180$
 $m\angle POA + 25 + 90 = 180$
 $m\angle POA = 65$

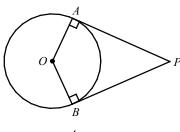
b.
$$PA = PB = 12$$

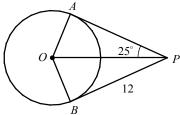
c.
$$\tan 25^{\circ} = \frac{OA}{PA} = \frac{OA}{12}$$

 $OA = 12 \tan 25^{\circ} \approx 5.6$



 $\angle POQ$ and $\angle POS$ are central angles. \widehat{PQ} , \widehat{QR} , \widehat{RS} , and \widehat{SP} are minor arcs. \widehat{QPS} and \widehat{QRS} are semicircles. \widehat{PQS} and \widehat{SPR} are major arcs. $\widehat{mQPS} = \widehat{mQRS} = 180$ $\widehat{mPQS} = 360 - \widehat{mSP}$



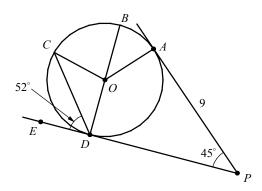


If a line is tangent to a circle, then the line is \perp to the radius at the point of tangency. Definition of \perp lines Angle Sum Theorem Substitution

Tangents to a circle from the same exterior point are \cong .

Exercises - Arcs, Angles, and Tangents

Questions 1 - 4 refer to the following information.



In the figure above, \overline{BD} is a diameter, and \overline{PA} and \overline{PD} are tangents to circle O. $m\angle CDE = 52$, $m\angle APD = 45$, and AP = 9.

1

What is the measure of $\angle ODC$?

2

What is the measure of $\angle OCD$?

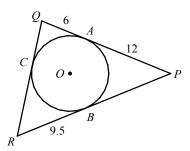
3

What is the measure of $\angle AOD$?

4

What is the length of PD?

5



In the figure above, $\odot O$ is inscribed in $\triangle PQR$. If PA = 12, QA = 6, and RB = 9.5, what is the perimeter of $\triangle PQR$?

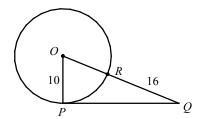
A) 46

B) 49

C) 52

D) 55

6



In the figure above, \overline{OP} is a radius and \overline{PQ} is tangent to circle O. If the radius of circle O is 10 and QR = 16, what is the length of \overline{PQ} ?

A) 16

B) 20

C) 24

D) 28

19-2. Arc Lengths and Areas of Sectors

Circumference of a circle: $C = 2\pi r$ or $C = \pi d$

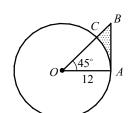
Area of circle: $A = \pi r^2$

A **sector** of a circle is a region bound by two radii and an arc of the circle. The shaded region of the circle at the right is called sector AOB.

Length of
$$\widehat{AB} = 2\pi r \cdot \frac{m\angle AOB}{360}$$

Area of sector
$$AOB = \pi r^2 \cdot \frac{m\angle AOB}{360}$$

The distance traveled by a wheel = $2\pi r \times \text{number of revolutions}$



Example 1 \Box In circle O shown at the right, \overline{AB} is tangent to the circle.

a. Find the area of the shaded region.

b. Find the perimeter of the shaded region.

Solution

□ a.
$$m \angle OAB = 90$$

 $m \angle OBA = 45$
 $OA = AB = 12$

Line tangent to a circle is \perp to the radius. Acute angles of a right Δ are complementary. Legs of isosceles triangle are \cong .

Area of
$$\triangle OAB = \frac{1}{2}(12)(12) = 72$$

Area of sector
$$AOC = \pi (12)^2 \cdot \frac{45}{360} = 18\pi$$
.

Area of shaded region = $72 - 18\pi$

Answer

b. Length of
$$\widehat{AC} = 2\pi(12) \cdot \frac{45}{360} = 3\pi$$

Length of
$$BC = OB - OC = 12\sqrt{2} - 12$$

In a 45°-45°-90° Δ , the hypotenuse is $\sqrt{2}$ times as long as a leg.

Perimeter of shaded region

= length of
$$\widehat{AC} + BC + AB$$

$$=3\pi + (12\sqrt{2} - 12) + 12 = 3\pi + 12\sqrt{2}$$

Answer

Example 2 \Box The radius of a bicycle wheel is 12 inches. What is the number of revolutions the wheel makes to travel 1 mile? (1 mile = 5,280 ft)

Solution

 \Box Let x = number of revolutions.

The distance traveled by a wheel = $2\pi r \times \text{number of revolutions}$

1 mile = $2\pi(12 \text{ in}) \times x$

$$1 \times 5280 \times 12 \text{ in} = 2\pi (12 \text{ in})x$$

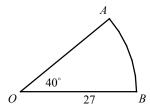
1 mile = $5280 \text{ ft} = 5280 \times 12 \text{ in}$

$$x = \frac{5280 \times 12}{2\pi \times 12} = \frac{2640}{\pi} \approx 840$$

Answer

Exercises - Arc Lengths and Areas of Sectors

Questions 1 and 2 refer to the following information.



In the figure above, \widehat{AB} is an arc of a circle with radius 27 cm.

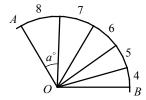
1

If the length of arc AB is $k\pi$, what is the value of k?

2

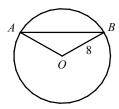
If the area of sector OAB is $n\pi$, what is the value of n?

3



The figure above shows arcs of length 8, 7, 6, 5, and 4. If $\widehat{mAB} = 120$, what is the degree measure of angle a?

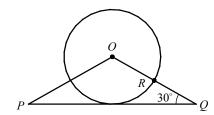
4



In the figure above, the radius of the circle is 8 and $m \angle AOB = 120^{\circ}$. What is the length of \overline{AB} ?

- A) $8\sqrt{2}$
- B) $8\sqrt{3}$
- C) $12\sqrt{2}$
- D) $12\sqrt{3}$

5



In the figure above, OP = OQ and \overline{PQ} is tangent to circle O. If the radius of circle O is 8, what is the length of \overline{QR} ?

- A) $10(\sqrt{2}-1)$
- B) 6
- C) $10(\sqrt{3}-1)$
- D) 8

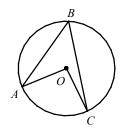
19-3. Inscribed Angles

An **inscribed angle** is an angle whose vertex is on a circle and whose sides contain chords of the circle.

Theorem - Inscribed Angle

The measure of an inscribed angle is half the measure of its intercepted arc and half the measure of its central angle.

$$m\angle B = \frac{1}{2}\widehat{mAC} = \frac{1}{2}m\angle AOC$$



Corollaries to the Inscribed Angle Theorem

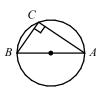
Corollary 1

Two inscribed angles that intercept the same arc are congruent.

 $\angle A \cong \angle B$

Corollary 2

An angle inscribed in a semicircle is a right angle.



 $\angle C$ is a right angle.

Corollary 3

If a quadrilateral is inscribed in a circle, its opposite angles are supplementary.

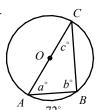
 $\angle A$ is supp. to $\angle C$ $\angle B$ is supp. to $\angle D$

Example 1 \Box a. In the figure below, find the values of x and y.

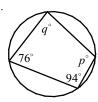
- b. In the figure below, AC is a diameter and $\widehat{mAB} = 72$. Find the values of a, b, and c.
- c. In the figure below, find the values of p and q.

a.

b.



c.



Solution

□ a.
$$x = y = 32$$

b.
$$c = 72 \div 2 = 36$$

$$b = 90$$

 $a + c = 90$
 $a = 90 - 36 = 54$

c.
$$p + 76 = 180$$

$$p = 104$$

 $q + 94 = 180$

$$q = 86$$

Inscribed $\angle s$ that intercept the same arc are \cong .

The measure of an inscribed \angle is half the measure of its intercepted arc.

An \angle inscribed in a semicircle is a right \angle . The acute $\angle s$ of a right Δ are complementary. Substitute c = 36 and solve for a.

If a quad. is inscribed in a circle, its opposite $\angle s$ are supplementary.

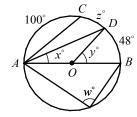
Solve for p.

Solve for q.

If a quad. is inscribed in a circle, its opposite $\angle s$ are supplementary.

Exercises - Inscribed Angles

Questions 1 - 4 refer to the following information.



In circle O above, \overline{AB} is a diameter.

1

What is the value of y?

2

What is the value of x?

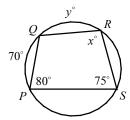
3

What is the value of w?

4

What is the value of z?

Questions 5 and 6 refer to the following information.



In the figure above, a quadrilateral is inscribed in a circle.

5

What is the value of x?

- A) 70
- B) 80
- C) 90
- D) 100

6

What is the value of y?

- A) 75
- B) 80
- C) 85
- D) 90

19-4. Arcs and Chords

Theorems

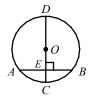
Theorem 1

In the same circle or in congruent circles, congruent arcs have congruent chords.

If $\widehat{AB} \cong \widehat{CD}$, then $\overline{AB} \cong \overline{CD}$. The converse is also true.

Theorem 2

If a diameter is \perp to a chord, it bisects the chord and its arc.



If diameter $\overline{CD} \perp \overline{AB}$, then $\overline{AE} \cong \overline{BE}$ and $\widehat{AC} \cong \widehat{BC}$.

Theorem 3

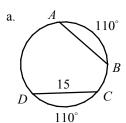
In the same circle or in congruent circles, chords equidistant to the center(s) are congruent.

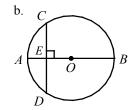
If OE = OF, then $\overline{AB} \cong \overline{CD}$. The converse is also true.

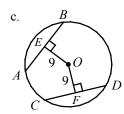
Example 1 \Box a. In the figure below, if $\widehat{mAB} = \widehat{mCD} = 110$ and $\widehat{CD} = 15$, what is the length of \overline{AB} ?

> b. In the figure below, $AB \perp CD$. If AB = 20 and CD = 16, what is the length of OE?

c. In the figure below, OE = OF = 9 and BE = 12. What is the length of CD?







Solution

□ a. AB = CD = 15

In the same circle, \cong arcs have \cong chords.

b.
$$DE = \frac{1}{2}CD = 8$$

If a diameter is \perp to a chord, it bisects the chord.

$$OD = OB = \frac{1}{2}AB = 10$$

In a circle, all radii are \cong .

$$OD^2 = DE^2 + OE^2$$

Pythagorean Theorem

$$10^2 = 8^2 + OE^2$$

Substitution

$$OE^2 = 36$$

 $OE = 6$

Simplify.

c.
$$AB = 2BE = 2(12) = 24$$

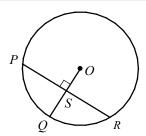
If a diameter is \perp to a chord, it bisects the chord.

$$CD = AB = 24$$

In the same circle, chords equidistant to the center are \cong .

Exercises - Arcs and Chords

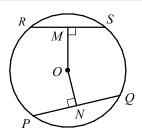
1



In circle O above, if the radius is 13 and PR = 24, what is the length of QS?

- A) 6
- B) 7
- C) 8
- D) 9

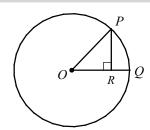
2



In the circle above, if RS = 6, OM = 5, and ON = 4, what is the length of PQ?

- A) $4\sqrt{2}$
- B) 6
- C) $6\sqrt{2}$
- D) $6\sqrt{3}$

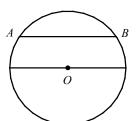
3



In circle O above, the area of the circle is 9π and $PR = \sqrt{5}$. What is the length of QR?

- A) 1
- B) $\sqrt{2}$
- C) $\sqrt{3}$
- D) 2

4



In the figure above, the radius of the circle is 12. If the length of chord \overline{AB} is 18, what is the distance between the chord and the diameter?

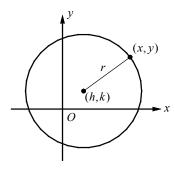
- A) $2\sqrt{10}$
- B) $3\sqrt{7}$
- C) $4\sqrt{5}$
- D) $6\sqrt{2}$

19-5. Circles in the Coordinate Plane

Equation of a Circle

The equation of a circle with center (h,k) and radius r is

$$(x-h)^2 + (y-k)^2 = r^2$$
.



Example 1 \Box a. Write an equation of a circle with center (-3,2) and r=2.

b. Find the center and radius of a circle with the equation $x^2 + y^2 - 4x + 6y - 12 = 0$.

c. Write an equation of a circle that is tangent to the y- axis and has center (4,3).

d. Write an equation of a circle whose endpoints of its diameter are at (-4,8) and (2,-4).

Solution

a.
$$(x-h)^2 + (y-k)^2 = r^2$$

 $(x-(-3))^2 + (y-2)^2 = 2^2$
 $(x+3)^2 + (y-2)^2 = 4$

Use the standard form of an equation of a circle.

Substitute (-3,2) for (h,k) and 2 for r.

Simplify.

b.
$$x^2 + v^2 - 4x + 6v = 12$$

Isolate the constant onto one side.

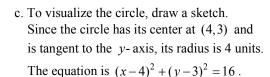
$$x^2 - 4x + 4 + y^2 + 6y + 9 = 12 + 4 + 9$$

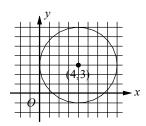
Add $(-4 \cdot \frac{1}{2})^2 = 4$ and $(6 \cdot \frac{1}{2})^2 = 9$ to each side.

$$(x-2)^2 + (y+3)^2 = 25$$

Factor.

The center is (2,-3) and $r = \sqrt{25} = 5$.





d. The center of a circle is the midpoint of its diameter.

$$(h,k) = (\frac{-4+2}{2}, \frac{8+(-4)}{2}) = (-1,2)$$

Use the distance formula to find the diameter of the circle.

$$d = \sqrt{(2 - (-4))^2 + (-4 - 8)^2} = \sqrt{6^2 + 12^2} = \sqrt{180} = 6\sqrt{5}$$

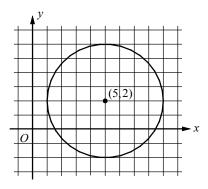
$$r = \frac{1}{2}(6\sqrt{5}) = 3\sqrt{5}$$

The equation of the circle is $(x+1)^2 + (y-2)^2 = (3\sqrt{5})^2$

or
$$(x+1)^2 + (y-2)^2 = 45$$
.

Exercises - Circles in the Coordinate Plane

1



Which of the following equations represents the equation of the circle shown in the *xy*-plane above?

A)
$$(x+5)^2 + (y+2)^2 = 4$$

B)
$$(x-5)^2 + (y-2)^2 = 4$$

C)
$$(x+5)^2 + (y+2)^2 = 16$$

D)
$$(x-5)^2 + (y-2)^2 = 16$$

2

Which of the following is an equation of a circle in the xy-plane with center (-2,0) and a radius with endpoint $(0,\frac{3}{2})$?

A)
$$x^2 + (y - \frac{3}{2})^2 = \frac{5}{2}$$

B)
$$x^2 + (y - \frac{3}{2})^2 = \frac{25}{4}$$

C)
$$(x+2)^2 + y^2 = \frac{25}{4}$$

D)
$$(x-2)^2 + y^2 = \frac{25}{4}$$

3

$$x^2 + 12x + y^2 - 4y + 15 = 0$$

The equation of a circle in the *xy*-plane is shown above. Which of the following is true about the circle?

A) center
$$(-6,2)$$
, radius = 5

B) center
$$(6,-2)$$
, radius = 5

C) center
$$(-6,2)$$
, radius = $\sqrt{15}$

D) center
$$(6,-2)$$
, radius = $\sqrt{15}$

4

Which of the following represents an equation of a circle whose diameter has endpoints (-8,4) and (2,-6)?

A)
$$(x-3)^2 + (y-1)^2 = 50$$

B)
$$(x+3)^2 + (v+1)^2 = 50$$

C)
$$(x-3)^2 + (y-1)^2 = 25$$

D)
$$(x+3)^2 + (v+1)^2 = 25$$

5

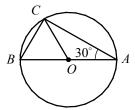
$$x^2 + 2x + y^2 - 4y - 9 = 0$$

The equation of a circle in the xy- plane is shown above. If the area of the circle is $k\pi$, what is the value of k?

Circles 319

Chapter 19 Practice Test

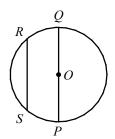
1



In the figure above, O is the center of the circle and \overline{AB} is a diameter. If the length of \overline{AC} is $4\sqrt{3}$ and $m\angle BAC = 30$, what is the area of circle O?

- A) 12π
- B) 16π
- C) 18π
- D) 24π

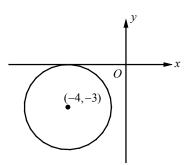
2



In the circle above, chord \overline{RS} is parallel to diameter \overline{PQ} . If the length of \overline{RS} is $\frac{3}{4}$ of the length of \overline{PQ} and the distance between the chord and the diameter is $2\sqrt{7}$, what is the radius of the circle?

- A) 6
- B) $3\sqrt{7}$
- C) 8
- D) $4\sqrt{7}$

3



In the figure above, the circle is tangent to the x-axis and has center (-4, -3). Which of the following equations represents the equation of the circle shown in the xy-plane above?

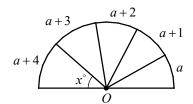
A)
$$(x+4)^2 + (y+3)^2 = 9$$

B)
$$(x-4)^2 + (y-3)^2 = 9$$

C)
$$(x+4)^2 + (y+3)^2 = 3$$

D)
$$(x-4)^2 + (y-3)^2 = 3$$

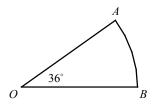
4



The figure above shows a semicircle with the lengths of the adjacent arcs a, a+1, a+2, a+3, and a+4. If the value of x is 42, what is the value of a?

- A) 7
- B) 8
- C) 9
- D) 10

5



In the figure above, the length of arc \widehat{AB} is π . What is the area of sector OAB?

- A) 2π
- B) $\frac{5}{2}\pi$
- C) 3π
- D) $\frac{7}{2}\pi$

6

$$x^2 - 4x + y^2 - 6x - 17 = 0$$

What is the area of the circle in the *xy*-plane above?

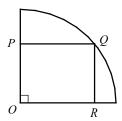
- A) 20π
- B) 24π
- C) 26π
- D) 30π

7

Which of the following is the equation of a circle that has a diameter of 8 units and is tangent to the graph of y = 2?

- A) $(x+1)^2 + (y+2)^2 = 16$
- B) $(x-1)^2 + (y-2)^2 = 16$
- C) $(x+2)^2 + (y+1)^2 = 16$
- D) $(x-2)^2 + (y-1)^2 = 16$

8



In the figure above, rectangle OPQR is inscribed in a quarter circle that has a radius of 9. If PQ = 7, what is the area of rectangle OPQR?

- A) $24\sqrt{2}$
- B) $26\sqrt{2}$
- C) $28\sqrt{2}$
- D) $30\sqrt{2}$

9

In a circle with center O, the central angle has a measure of $\frac{2\pi}{3}$ radians. The area of the sector formed by central angle AOB is what fraction of the area of the circle?

10

A wheel with a radius of 2.2 feet is turning at a constant rate of 400 revolutions per minute on a road. If the wheel traveled $k\pi$ miles in one hour what is the value of k? (1 mile = 5,280 feet)

Answer Key

Section 19-1

1. 38 2. 38 3. 135 4. 9 5. D 6. C

Section 19-2

1. 6 2. 81 3. 32 4. B 5. D

Section 19-3

1. 48 2. 24 3. 90 4. 32 5. D 6. B

Section 19-4

1. C 2. C 3. A 4. B

Section 19-5

1. D 2. C 3. A 4. B 5. 14

Chapter 19 Practice Test

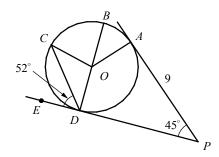
1. B 2. C 3. A 4. D 5. B

6. D 7. A 8. C 9. $\frac{1}{3}$ 10. 20

Answers and Explanations

Section 19-1

1. 38



 $\overline{PD} \perp \overline{OD}$ Tangent to a ⊙ is \perp to radius. $m \angle ODE = 90$ A right \angle measures 90. $m \angle ODC = 90 - 52$ = 38

2. 38

OC = OD In a \odot all radii are \cong . $m\angle OCD = m\angle ODC$ Isosceles Triangle Theorem = 38

3. 135

If a line is tangent to a circle, the line is \perp to the radius at the point of tangency. Therefore, $m\angle ODP = m\angle OAP = 90$.

The sum of the measures of interior angles of quadrilateral is 360. Therefore,

$$m\angle AOD + m\angle ODP + m\angle OAP + m\angle P = 360$$
.

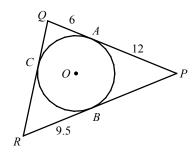
$$m\angle AOD + 90 + 90 + 45 = 360$$
 Substitution $m\angle AOD + 225 = 360$ Simplify. $m\angle AOD = 135$

4. 9

Tangents to a circle from the same exterior point are congruent. Therefore,

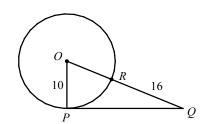
$$PD = PA = 9$$
.

5. D



Since tangents to a circle from the same exterior point are congruent, QA = QC = 6, PA = PB = 12, and RB = RC = 9.5. Therefore, Perimeter of $\Delta PQR = 2(6+12+9.5) = 55$

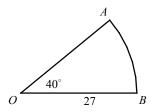
6. C



OR = OP = 10 In a \odot all radii are \cong . OQ = OR + RQ Segment Addition Postulate = 10 + 16 = 26 $PQ^2 + OP^2 = OQ^2$ Pythagorean Theorem $PQ^2 + 10^2 = 26^2$ Substitution $PQ^2 = 26^2 - 10^2 = 576$ $PQ = \sqrt{576} = 24$

Section 19-2

1. 6

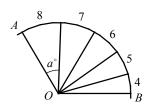


Length of arc $AB = 2\pi r \cdot \frac{m\angle AOB}{360}$ = $2\pi (27) \cdot \frac{40}{360} = 6\pi$ Thus, k = 6.

2. 81

Area of sector $OAB = \pi r^2 \cdot \frac{m \angle AOB}{360}$ = $\pi (27)^2 \cdot \frac{40}{360} = 81\pi$ Thus, n = 81.

3. 32

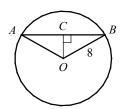


The length of arc AB = 8+7+6+5+4=30In a circle, the lengths of the arcs are proportional to the degree measures of the corresponding arcs.

Therefore, $\frac{\text{length of arc } AB}{120^{\circ}} = \frac{8}{a^{\circ}}$. $\frac{30}{120} = \frac{8}{a}$ Substitution

 $120 \quad a$ $30a = 120 \times 8$ Cross Products a = 32

4. B



Draw \overline{OC} perpendicular to \overline{AB} . Since $\triangle AOB$ is an isosceles triangle, \overline{OC} bisects $\angle AOB$.

$$m\angle AOC = m\angle BOC = \frac{1}{2}m\angle AOB = \frac{1}{2}(120) = 60$$
.

 ΔBOC is a 30°-60°-90° triangle.

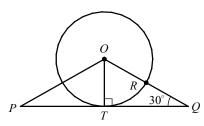
In a 30°-60°-90° triangle, the hypotenuse is twice as long as the shorter leg and the longer leg is $\sqrt{3}$ times as long as the shorter leg.

$$OC = \frac{1}{2}OB = \frac{1}{2}(8) = 4$$

$$BC = \sqrt{3} \cdot OC = 4\sqrt{3}$$

$$AB = 2BC = 2 \times 4\sqrt{3} = 8\sqrt{3}$$

5. D



Let T be a point of tangency. Then $\overline{PQ} \perp \overline{OT}$, because a line tangent to a circle is \perp to the radius at the point of tangency.

$$\triangle OQT$$
 is a 30°-60°-90° triangle.

$$OT = OR = 8$$
 In a \odot all radii are \cong .

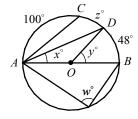
In a 30° - 60° - 90° triangle, the hypotenuse is twice as long as the shorter leg. Therefore,

$$OQ = 2OT = 2(8) = 16$$

 $OR = OO - OR = 16 - 8 = 8$

Section 19-3

1. 48



The measure of a minor arc is the measure of its central angle. Therefore, y = 48.

2. 24

The measure of an inscribed angle is half the measure of its intercepted arc.

Therefore,
$$x = \frac{1}{2}(48) = 24$$
.

3. 90

An angle inscribed in a semicircle is a right angle. Therefore, w = 90.

4. 32

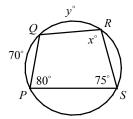
The measure of a semicircle is 180, thus $\widehat{mACB} = 180$.

The measure of an arc formed by two adjacent arcs is the sum of the measure of the two arcs, thus

$$\widehat{mACB} = \widehat{mAC} + \widehat{mCD} + \widehat{mDB}$$

 $180 = 100 + z + 48$ Substitution
 $180 = 148 + z$ Simplify.
 $32 = z$

5. D



If a quadrilateral is inscribed in a circle, its opposite angles are supplementary. Therefore, x + 80 = 180. x = 100

6. B

The measure of an inscribed angle is half the measure of its intercepted arc. Therefore,

$$m\angle RSP = \frac{1}{2}(m\widehat{PQ} + m\widehat{QR}).$$

$$75 = \frac{1}{2}(70 + y)$$
 Substitution

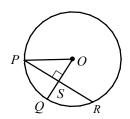
$$2 \cdot 75 = 2 \cdot \frac{1}{2}(70 + y)$$
 Multiply each side by 2.

$$150 = 70 + y$$
 Simplify.

Section 19-4

80 = y

1. C



If a diameter is \perp to a chord, it bisects the chord and its arc. Therefore,

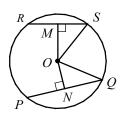
$$PS = \frac{1}{2}PR = \frac{1}{2}(24) = 12$$
.

The radius of the circle is 13, thus OP = OQ = 13.

Draw \overline{OP} .

$$OS^2 + PS^2 = OP^2$$
 Pythagorean Theorem
 $OS^2 + 12^2 = 13^2$ Substitution
 $OS^2 = 13^2 - 12^2 = 25$
 $OS = \sqrt{25} = 5$
 $OS = OQ - OS$
 $= 13 - 5$
 $= 8$

2. C



Draw \overline{OS} and \overline{OQ} .

If a diameter is \perp to a chord, it bisects the chord and its arc. Therefore,

$$MS = \frac{1}{2}RS = \frac{1}{2}(6) = 3$$
 and $PQ = 2NQ$.

$$OS^2 = MS^2 + OM^2$$
 Pythagorean Theorem
 $OS^2 = 3^2 + 5^2$ Substitution
 $OS^2 = 34$

$$OS^{-} = 34$$
$$OS = \sqrt{34}$$

$$OQ = OS = \sqrt{34}$$

In a \odot all radii are \cong .

$$OQ^2 = ON^2 + NQ^2$$

Pythagorean Theorem

$$(\sqrt{34)}^2 = 4^2 + NQ^2$$

Substitution

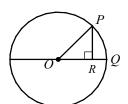
$$34 = 16 + NQ^2$$

$$18 = NQ^2$$

$$NQ = \sqrt{18} = 3\sqrt{2}$$

$$PO = 2NO = 2(3\sqrt{2}) = 6\sqrt{2}$$

3. A



Area of the circle = $\pi r^2 = 9\pi$.

$$\Rightarrow r^2 = 9 \Rightarrow r = 3$$

Therefore, OP = OQ = 3.

$$OR^2 + PR^2 = OP^2$$

Pythagorean Theorem

$$QR^2 + (\sqrt{5})^2 = 3^2$$

Substitution

$$OR^2 + 5 = 9$$

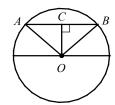
Simplify.

$$OR^2 = 9 - 5 = 4$$

$$OR = \sqrt{4} = 2$$

$$QR = QQ - QR = 3 - 2 = 1$$

4. B



Draw \overline{OA} and \overline{OB} . Draw $\overline{OC} \perp$ to \overline{AB} . OC is the distance between the chord and the diameter.

$$BC = \frac{1}{2}AB = \frac{1}{2}(18) = 9$$

$$OC^2 + BC^2 = OB^2$$

Pythagorean Theorem

$$OC^2 + 9^2 = 12^2$$

Substitution

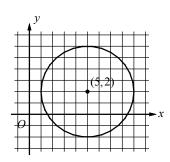
$$OC^2 = 12^2 - 9^2 = 63$$

$$OC = \sqrt{63}$$
$$= \sqrt{9} \cdot \sqrt{7}$$

$= \sqrt{9} \cdot \sqrt{7}$ $= 3\sqrt{7}$

Section 19-5

1. D



The equation of a circle with center (h,k) and radius r is $(x-h)^2 + (y-k)^2 = r^2$.

The center of the circle shown above is (5,2) and the radius is 4. Therefore, the equation of the circle is $(x-5)^2 + (y-2)^2 = 4^2$.

2. C

Use the distance formula to find the radius.

$$r = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad (x_1, y_1) = (-2, 0)$$

$$= \sqrt{(0 - (-2))^2 + (\frac{3}{2} - 0)^2} \qquad (x_2, y_2) = (0, \frac{3}{2})$$

$$= \sqrt{4 + \frac{9}{4}} \qquad \text{Simplify.}$$

$$= \sqrt{\frac{16}{4} + \frac{9}{4}} = \sqrt{\frac{25}{4}}$$

Therefore, the equation of the circle is

$$(x-(-2))^2 + (y-0)^2 = (\sqrt{\frac{25}{4}})^2$$
.

Choice C is correct.

3. A

$$x^2 + 12x + v^2 - 4v + 15 = 0$$

Isolate the constant onto one side.

$$x^2 + 12x + y^2 - 4y = -15$$

Add
$$(12 \cdot \frac{1}{2})^2 = 36$$
 and $(-4 \cdot \frac{1}{2})^2 = 4$ to each side.

$$(x^2+12x+36)+(y^2-4y+4)=-15+36+4$$

Complete the square.

$$(x+6)^2 + (y-2)^2 = 25$$

The center of the circle is (-6,2) and the radius is $\sqrt{25}$, or 5.

4. B

The center of the circle is the midpoint of the diameter. Use the midpoint formula to find the center of the circle.

$$(h,k) = (\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$$
$$= (\frac{-8+2}{2}, \frac{4+(-6)}{2}) = (-3, -1)$$

The radius is half the distance of the diameter. Use the distance formula to find the diameter.

$$d = \sqrt{(2 - (-8))^2 + (-6 - 4)^2} = \sqrt{100 + 100}$$
$$= \sqrt{200} = \sqrt{100} \cdot \sqrt{2} = 10\sqrt{2}$$
$$r = \frac{1}{2}d = \frac{1}{2}(10\sqrt{2}) = 5\sqrt{2}$$

Therefore, the equation of the circle is

$$(x-(-3))^2 + (y-(-1))^2 = (5\sqrt{2})^2$$
, or

$$(x+3)^2 + (y+1)^2 = 50$$
.

5. 14

$$x^2 + 2x + y^2 - 4y - 9 = 0$$

Isolate the constant onto one side.

$$x^2 + 2x + y^2 - 4y = 9$$

Add
$$(2 \cdot \frac{1}{2})^2 = 1$$
 and $(-4 \cdot \frac{1}{2})^2 = 4$ to each side.

$$(x^2 + 2x + 1) + (y^2 - 4y + 4) = 9 + 1 + 4$$

Complete the square.

$$(x+1)^2 + (y-2)^2 = 14$$

The radius of the circle is $\sqrt{14}$.

Area of the circle is $\pi r^2 = \pi (\sqrt{14})^2 = 14\pi$.

Therefore, k = 14.

Chapter 19 Practice Test

1. B

An angle inscribed in a semicircle is a right angle. Therefore, $\angle ACB = 90$.

So, $\triangle ABC$ is a 30°-60°-90° triangle.

In a 30° - 60° - 90° triangle, the hypotenuse is twice as long as the shorter leg and the longer leg is $\sqrt{3}$ times as long as the shorter leg.

$$AC = \sqrt{3}BC$$

$$4\sqrt{3} = \sqrt{3}BC$$

$$AC = 4\sqrt{3}$$

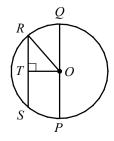
$$4 = BC$$

$$AB = 2BC = 2(4) = 8$$

Therefore, the radius of circle O is 4.

Area of circle $Q = \pi(4)^2 = 16\pi$

2. C



Draw \overline{OR} and \overline{OT} as shown above. Let the radius of the circle be r, then OQ = OR = r.

Since the ratio of RS to QP is 3 to 4, the ratio of RT to OQ is also 3 to 4.

Therefore, $RT = \frac{3}{4}OQ = \frac{3}{4}r$.

OT is the distance between the chord and the

diameter, which is given as $2\sqrt{7}$.

$$OR^2 = RT^2 + OT^2$$

Pythagorean Theorem

$$r^2 = (\frac{3}{4}r)^2 + (2\sqrt{7})^2$$

Substitution

$$r^2 = \frac{9}{16}r^2 + 28$$

Simplify.

$$r^2 - \frac{9}{16}r^2 = 28$$

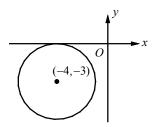
$$\frac{7}{16}r^2 = 28$$

$$\frac{16}{7} \cdot \frac{7}{16} r^2 = \frac{16}{7} \cdot 28$$

$$r^2 = 64$$

$$r = \sqrt{64} = 8$$

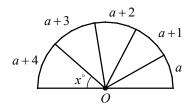
3. A



If the center of the circle is (-4, -3) and the circle is tangent to the x-axis, the radius is 3.

The equation is $(x-(-4))^2 + (y-(-3))^2 = 3^2$, or $(x+4)^2 + (y+3)^2 = 9$.

4. D



The arc length of the semicircle is

$$(a+4)+(a+3)+(a+2)+(a+1)+a=5a+10$$
.

In a circle, the lengths of the arcs are proportional to the degree measures of the corresponding arcs.

Therefore, $\frac{\text{arc length of semicircle}}{180^{\circ}} = \frac{a+4}{x^{\circ}}$

$$\frac{5a+10}{180} = \frac{a+4}{42}$$

Substitution

$$42(5a+10) = 180(a+4)$$

Cross Products

$$210a + 420 = 180a + 720$$

30a = 300

$$a = 10$$

Length of arc
$$AB = 2\pi r \cdot \frac{m\angle AOB}{360}$$

= $2\pi r \cdot \frac{36}{360} = \frac{\pi r}{5}$

Since the length of the arc is given as π ,

 $\frac{\pi r}{5} = \pi$. Solving the equation for r gives r = 5.

Area of sector
$$AOB = \pi r^2 \cdot \frac{m \angle AOB}{360}$$

$$=\pi(5)^2\cdot\frac{36}{360}=\frac{5}{2}\pi$$

6. D

$$x^{2} - 4x + y^{2} - 6x - 17 = 0$$
$$x^{2} - 4x + y^{2} - 6x = 17$$

To complete the square, add $(-4 \cdot \frac{1}{2})^2 = 4$ and

$$(-6 \cdot \frac{1}{2})^2 = 9$$
 to each side.

$$x^2 - 4x + 4 + y^2 - 6x + 9 = 17 + 4 + 9$$

$$(x-2)^2 + (y-3)^2 = 30$$

The radius of the circle is $\sqrt{30}$, the area of the circle is $\pi(\sqrt{30})^2 = 30\pi$

7. A

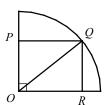
If the diameter of the circle is 8 units, the radius of the circle is 4 units. Since the radius of the circle is 4 units, the y-coordinate of the center has to be 4 units above or below y = 2.

The y-coordinate of the center has to be either 6 or -2. Among the answer choices, only choice A has -2 as the y-coordinate.

No other answer choice has 6 or -2 as the y-coordinate of the center.

Choice A is correct.

8. C



Draw \overline{OQ} . Since \overline{OQ} is a radius, OQ = 9.

$$OP^2 + PQ^2 = OQ^2$$

Pythagorean Theorem

$$OP^2 + 7^2 = 9^2$$
 Substitution
 $OP^2 = 9^2 - 7^2 = 32$
 $OP = \sqrt{32} = \sqrt{16} \cdot \sqrt{2} = 4\sqrt{2}$
Area of rectangle $OPQR = OP \times PQ$
 $= 4\sqrt{2} \times 7 = 28\sqrt{2}$

9. $\frac{1}{3}$

Area of sector
$$AOB = \pi r^2 \cdot \frac{m \angle AOB}{360}$$

The area of a sector is the fractional part of the area of a circle. The area of a sector formed by $\frac{2\pi}{3}$ radians of arc is $\frac{2\pi/3}{2\pi}$, or $\frac{1}{3}$, of the area of the circle.

10.20

Thus, k = 20.

The distance the wheel travels in 1 minute is equal to the product of the circumference of the wheel and the number of revolutions per minute. The distance the wheel travels in 1 minute = $2\pi r \times$ the number of revolutions per minute = $2\pi (2.2 \text{ ft}) \times 400 = 1,760\pi \text{ ft}$ Total distance traveled in 1 hour = $1,760\pi \text{ ft} \times 60 = 105,600\pi \text{ ft}$ the sum of the sum of