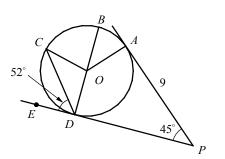
Answer Key					
Section 19-1					
1. 38 6. C	2.38	3. 135	4.9	5. D	
Section 19-2					
1.6	2.81	3.32	4. B	5. D	
Section 19-3					
1. 48 6. B	2.24	3.90	4.32	5. D	
Section 19-4					
1. C	2. C	3. A	4. B		
Section 19-5					
1. D	2. C	3. A	4. B	5.14	
Chapter 19 Practice Test					
1. B	2. C	3. A	4. D	5. B	
6. D	7. A	8. C	9. $\frac{1}{3}$	10. 20	

Answers and Explanations

1. 38



 $\overline{PD} \perp \overline{OD}$ Tangent to a \odot is \perp to radius. $m \angle ODE = 90$ A right \angle measures 90. $m \angle ODC = 90 - 52$ = 38

2. 38

OC = OD In a \odot all radii are \cong . $m \angle OCD = m \angle ODC$ Isosceles Triangle Theorem = 38

3. 135

If a line is tangent to a circle, the line is \perp to the radius at the point of tangency. Therefore, $m\angle ODP = m\angle OAP = 90$. The sum of the measures of interior angles of quadrilateral is 360. Therefore, $m\angle AOD + m\angle ODP + m\angle OAP + m\angle P = 360$.

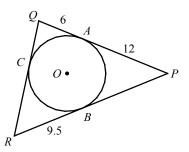
 $m \angle AOD + 90 + 90 + 45 = 360$ Substitution $m \angle AOD + 225 = 360$ Simplify. $m \angle AOD = 135$

4. 9

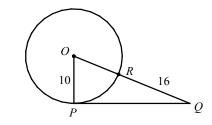
Tangents to a circle from the same exterior point are congruent. Therefore,

$$PD = PA = 9$$

5. D



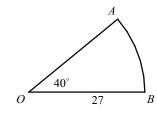
Since tangents to a circle from the same exterior point are congruent, QA = QC = 6, PA = PB = 12, and RB = RC = 9.5. Therefore, Perimeter of $\Delta PQR = 2(6+12+9.5) = 55$



 $OR = OP = 10 In a \odot all radii are \cong .$ OQ = OR + RQ Segment Addition Postulate $= 10 + 16 = 26 PQ^{2} + OP^{2} = OQ^{2} Pythagorean Theorem PQ^{2} + 10^{2} = 26^{2} Substitution PQ^{2} = 26^{2} - 10^{2} = 576 PQ = \sqrt{576} = 24$

Section 19-2

1. 6



Length of arc $AB = 2\pi r \cdot \frac{m \angle AOB}{360}$

$$=2\pi(27)\cdot\frac{40}{360}=6\pi$$

Thus, $k=6$.

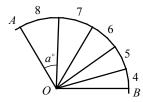
2. 81

Area of sector
$$OAB = \pi r^2 \cdot \frac{m \angle AOB}{360}$$

$$=\pi(27)^2 \cdot \frac{1}{360} = 81\pi$$

Thus, $n = 81$.

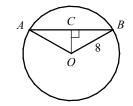
3. 32



The length of arc AB = 8 + 7 + 6 + 5 + 4 = 30In a circle, the lengths of the arcs are proportional to the degree measures of the corresponding arcs.

Therefore,
$$\frac{\text{length of arc } AB}{120^{\circ}} = \frac{8}{a^{\circ}}$$
.
 $\frac{30}{120} = \frac{8}{a}$ Substitution
 $30a = 120 \times 8$ Cross Products
 $a = 32$

4. B



Draw \overline{OC} perpendicular to \overline{AB} . Since $\triangle AOB$ is an isosceles triangle, \overline{OC} bisects $\angle AOB$.

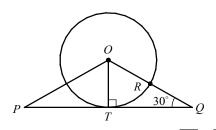
$$m \angle AOC = m \angle BOC = \frac{1}{2} m \angle AOB = \frac{1}{2} (120) = 60.$$

 ΔBOC is a 30°-60°-90° triangle.

In a 30°-60°-90° triangle, the hypotenuse is twice as long as the shorter leg and the longer leg is $\sqrt{3}$ times as long as the shorter leg.

$$OC = \frac{1}{2}OB = \frac{1}{2}(8) = 4$$
$$BC = \sqrt{3} \cdot OC = 4\sqrt{3}$$
$$AB = 2BC = 2 \times 4\sqrt{3} = 8\sqrt{3}$$

5. D

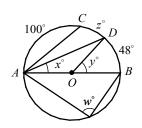


Let *T* be a point of tangency. Then $\overline{PQ} \perp \overline{OT}$, because a line tangent to a circle is \perp to the radius at the point of tangency. ΔOQT is a 30°-60°-90° triangle.

OT = OR = 8 In a \odot all radii are \cong . In a 30°-60°-90° triangle, the hypotenuse is twice as long as the shorter leg. Therefore, OQ = 2OT = 2(8) = 16OR = OQ - OR = 16 - 8 = 8

Section 19-3

1. 48



The measure of a minor arc is the measure of its central angle. Therefore, y = 48.

2. 24

The measure of an inscribed angle is half the measure of its intercepted arc.

Therefore,
$$x = \frac{1}{2}(48) = 24$$
.

3. 90

An angle inscribed in a semicircle is a right angle. Therefore, w = 90.

4. 32

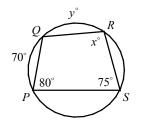
The measure of a semicircle is 180, thus

 $m\widehat{ACB} = 180$.

The measure of an arc formed by two adjacent arcs is the sum of the measure of the two arcs, thus

 $\widehat{mACB} = \widehat{mAC} + \widehat{mCD} + \widehat{mDB}$ 180 = 100 + z + 48 Substitution 180 = 148 + z Simplify. 32 = z

5. D



If a quadrilateral is inscribed in a circle, its opposite angles are supplementary. Therefore, x + 80 = 180. x = 100

6. B

The measure of an inscribed angle is half the measure of its intercepted arc. Therefore,

$$m \angle RSP = \frac{1}{2} (m \widehat{PQ} + m \widehat{QR}).$$

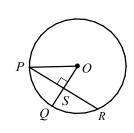
$$75 = \frac{1}{2} (70 + y)$$
 Substitution

$$2 \cdot 75 = 2 \cdot \frac{1}{2} (70 + y)$$
 Multiply each side by 2.

$$150 = 70 + y$$
 Simplify.

$$80 = y$$

Section 19-4



If a diameter is \perp to a chord, it bisects the chord and its arc. Therefore,

$$PS = \frac{1}{2}PR = \frac{1}{2}(24) = 12$$

The radius of the circle is 13, thus OP = OQ = 13. Draw \overline{OP} .

$$OS^{2} + PS^{2} = OP^{2}$$

$$OS^{2} + 12^{2} = 13^{2}$$

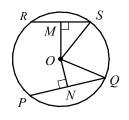
$$OS^{2} = 13^{2} - 12^{2} = 25$$

$$OS = \sqrt{25} = 5$$

$$QS = OQ - OS$$

$$= 13 - 5$$

$$= 8$$
Pythagorean Theorem Substitution



Draw \overline{OS} and \overline{OQ} . If a diameter is \perp to a chord, it bisects the chord and its arc. Therefore,

$$MS = \frac{1}{2}RS = \frac{1}{2}(6) = 3 \text{ and } PQ = 2NQ.$$

$$OS^{2} = MS^{2} + OM^{2}$$
Pythagorean Theorem

$$OS^{2} = 3^{2} + 5^{2}$$
Substitution

$$OS^{2} = 34$$

$$OQ = OS = \sqrt{34}$$
In a \odot all radii are \cong

$$OQ^{2} = ON^{2} + NQ^{2}$$
Pythagorean Theorem

$$(\sqrt{34})^{2} = 4^{2} + NQ^{2}$$
Substitution

$$34 = 16 + NQ^{2}$$

$$18 = NQ^{2}$$

$$NQ = \sqrt{18} = 3\sqrt{2}$$

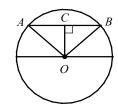
$$PQ = 2NQ = 2(3\sqrt{2}) = 6\sqrt{2}$$

3. A



Area of the circle $= \pi r^2 = 9\pi$. $\Rightarrow r^2 = 9 \Rightarrow r = 3$ Therefore, OP = OQ = 3. $OR^2 + PR^2 = OP^2$ Pythagorean Theorem $OR^2 + (\sqrt{5})^2 = 3^2$ Substitution $OR^2 + 5 = 9$ Simplify. $OR^2 = 9 - 5 = 4$ $OR = \sqrt{4} = 2$ QR = OQ - OR = 3 - 2 = 1

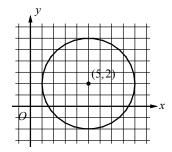
4. B



Draw \overline{OA} and \overline{OB} . Draw $\overline{OC} \perp$ to \overline{AB} . OC is the distance between the chord and the diameter.

 $BC = \frac{1}{2}AB = \frac{1}{2}(18) = 9$ $OC^{2} + BC^{2} = OB^{2}$ Pythagorean Theorem $OC^{2} + 9^{2} = 12^{2}$ Substitution $OC^{2} = 12^{2} - 9^{2} = 63$ $OC = \sqrt{63}$ $= \sqrt{9} \cdot \sqrt{7}$ $= 3\sqrt{7}$

1. D



The equation of a circle with center (h,k) and radius r is $(x-h)^2 + (y-k)^2 = r^2$.

The center of the circle shown above is (5,2) and the radius is 4. Therefore, the equation of the circle is $(x-5)^2 + (y-2)^2 = 4^2$. 2. C

Use the distance formula to find the radius.

$$r = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \quad (x_1, y_1) = (-2, 0)$$

= $\sqrt{(0 - (-2))^2 + (\frac{3}{2} - 0)^2} \quad (x_2, y_2) = (0, \frac{3}{2})$
= $\sqrt{4 + \frac{9}{4}}$ Simplify.
= $\sqrt{\frac{16}{4} + \frac{9}{4}} = \sqrt{\frac{25}{4}}$

Therefore, the equation of the circle is

$$(x-(-2))^{2}+(y-0)^{2}=(\sqrt{\frac{25}{4}})^{2}.$$

Choice C is correct.

3. A

$$x^{2} + 12x + y^{2} - 4y + 15 = 0$$

Isolate the constant onto one side.
 $x^{2} + 12x + y^{2} - 4y = -15$
Add $(12 \cdot \frac{1}{2})^{2} = 36$ and $(-4 \cdot \frac{1}{2})^{2} = 4$ to each side.
 $(x^{2} + 12x + 36) + (y^{2} - 4y + 4) = -15 + 36 + 4$
Complete the square.
 $(x + 6)^{2} + (y - 2)^{2} = 25$
The center of the circle is (-6, 2) and the radius
is $\sqrt{25}$, or 5.

4. B

The center of the circle is the midpoint of the diameter. Use the midpoint formula to find the center of the circle.

$$(h,k) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$
$$= \left(\frac{-8 + 2}{2}, \frac{4 + (-6)}{2}\right) = (-3, -1)$$

The radius is half the distance of the diameter. Use the distance formula to find the diameter.

$$d = \sqrt{(2 - (-8))^2 + (-6 - 4)^2} = \sqrt{100 + 100}$$
$$= \sqrt{200} = \sqrt{100} \cdot \sqrt{2} = 10\sqrt{2}$$
$$r = \frac{1}{2}d = \frac{1}{2}(10\sqrt{2}) = 5\sqrt{2}$$

Therefore, the equation of the circle is

$$(x - (-3))^2 + (y - (-1))^2 = (5\sqrt{2})^2$$
, or
 $(x + 3)^2 + (y + 1)^2 = 50$.

5. 14 $x^{2} + 2x + y^{2} - 4y - 9 = 0$ Isolate the constant onto one side. $x^{2} + 2x + y^{2} - 4y = 9$ Add $(2 \cdot \frac{1}{2})^{2} = 1$ and $(-4 \cdot \frac{1}{2})^{2} = 4$ to each side. $(x^{2} + 2x + 1) + (y^{2} - 4y + 4) = 9 + 1 + 4$ Complete the square. $(x + 1)^{2} + (y - 2)^{2} = 14$ The radius of the circle is $\sqrt{14}$. Area of the circle is $\pi r^{2} = \pi(\sqrt{14})^{2} = 14\pi$. Therefore, k = 14.

Chapter 19 Practice Test

1. B

An angle inscribed in a semicircle is a right angle. Therefore, $\angle ACB = 90$.

So, $\triangle ABC$ is a 30°-60°-90° triangle.

In a 30°-60°-90° triangle, the hypotenuse is twice as long as the shorter leg and the longer leg is $\sqrt{3}$ times as long as the shorter leg.

$$AC = \sqrt{3}BC$$

$$4\sqrt{3} = \sqrt{3}BC$$

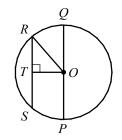
$$AC = 4\sqrt{3}$$

$$4 = BC$$

$$AB = 2BC = 2(4) = 8$$

Therefore, the radius of circle *O* is 4.
Area of circle $O = \pi(4)^2 = 16\pi$

2. C



Draw \overline{OR} and \overline{OT} as shown above. Let the radius of the circle be r, then OQ = OR = r. Since the ratio of RS to QP is 3 to 4, the ratio of RT to OQ is also 3 to 4.

Therefore,
$$RT = \frac{3}{4}OQ = \frac{3}{4}r$$
.
OT is the distance between the chord and the

diameter, which is given as $2\sqrt{7}$.

$$OR^{2} = RT^{2} + OT^{2}$$
Pythagorean Theorem

$$r^{2} = (\frac{3}{4}r)^{2} + (2\sqrt{7})^{2}$$
Substitution

$$r^{2} = \frac{9}{16}r^{2} + 28$$
Simplify.

$$r^{2} - \frac{9}{16}r^{2} = 28$$

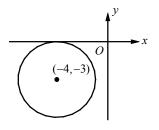
$$\frac{7}{16}r^{2} = 28$$

$$\frac{16}{7} \cdot \frac{7}{16}r^{2} = \frac{16}{7} \cdot 28$$

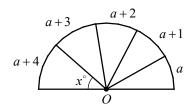
$$r^{2} = 64$$

$$r = \sqrt{64} = 8$$

3. A



If the center of the circle is (-4, -3) and the circle is tangent to the *x*-axis, the radius is 3. The equation is $(x - (-4))^2 + (y - (-3))^2 = 3^2$, or $(x + 4)^2 + (y + 3)^2 = 9$.



The arc length of the semicircle is (a+4)+(a+3)+(a+2)+(a+1)+a = 5a+10. In a circle, the lengths of the arcs are proportional to the degree measures of the corresponding arcs.

Therefore, arc length of se	$\frac{\text{emicircle}}{a+4} = \frac{a+4}{a+4}$			
180°	x° .			
$\frac{5a+10}{180} = \frac{a+4}{42}$	Substitution			
42(5a+10) = 180(a+4)	Cross Products			
210a + 420 = 180a + 720				
30a = 300				
a = 10				

5. B

Length of arc $AB = 2\pi r \cdot \frac{m\angle AOB}{360}$ = $2\pi r \cdot \frac{36}{360} = \frac{\pi r}{5}$ Since the length of the arc is given as π , $\frac{\pi r}{5} = \pi$. Solving the equation for r gives r = 5. Area of sector $AOB = \pi r^2 \cdot \frac{m\angle AOB}{360}$ = $\pi (5)^2 \cdot \frac{36}{360} = \frac{5}{2}\pi$

6. D

$$x^{2}-4x + y^{2}-6x - 17 = 0$$
$$x^{2}-4x + y^{2}-6x = 17$$

To complete the square, add $(-4 \cdot \frac{1}{2})^2 = 4$ and

$$(-6 \cdot \frac{1}{2})^2 = 9$$
 to each side.
 $x^2 - 4x + 4 + y^2 - 6x + 9 = 17 + 4 + 9$
 $(x-2)^2 + (y-3)^2 = 30$

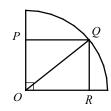
The radius of the circle is $\sqrt{30}$, the area of the circle is $\pi(\sqrt{30})^2 = 30\pi$

7. A

If the diameter of the circle is 8 units, the radius of the circle is 4 units. Since the radius of the circle is 4 units, the y- coordinate of the center has to be 4 units above or below y = 2. The y- coordinate of the center has to be either 6 or -2. Among the answer choices, only choice A has -2 as the y- coordinate.

No other answer choice has 6 or -2 as the y-coordinate of the center. Choice A is correct.

8. C



Draw \overline{OQ} . Since \overline{OQ} is a radius, OQ = 9. $OP^2 + PQ^2 = OQ^2$ Pythagorean Theorem

$$OP^{2} + 7^{2} = 9^{2}$$
Substitution

$$OP^{2} = 9^{2} - 7^{2} = 32$$

$$OP = \sqrt{32} = \sqrt{16} \cdot \sqrt{2} = 4\sqrt{2}$$

Area of rectangle $OPQR = OP \times PQ$

$$= 4\sqrt{2} \times 7 = 28\sqrt{2}$$

9. $\frac{1}{3}$

Area of sector $AOB = \pi r^2 \cdot \frac{m \angle AOB}{360}$ The area of a sector is the fractional part of the area of a circle. The area of a sector formed by

 $\frac{2\pi}{3}$ radians of arc is $\frac{2\pi/3}{2\pi}$, or $\frac{1}{3}$, of the area of the circle.

10.20

The distance the wheel travels in 1 minute is equal to the product of the circumference of the wheel and the number of revolutions per minute. The distance the wheel travels in 1 minute $= 2\pi r \times$ the number of revolutions per minute $= 2\pi (2.2 \text{ ft}) \times 400 = 1,760\pi \text{ ft}$ Total distance traveled in 1 hour $= 1,760\pi \text{ ft} \times 60 = 105,600\pi \text{ ft}$ $= 105,600\pi \text{ ft} \times \frac{1 \text{ mile}}{5,280 \text{ ft}} = 20\pi \text{ miles}$ Thus, k = 20.