Answer Key

Section 18-1

1. 4 2. 6 3. 112 4.68 5. 70 6. 24 7. 240

Section 18-2

1. 25 2. 7.5 3. 27 4. C 5. D

Section 18-3

1. 120 2. 5 3. 15 4. D 5. 108 6. 36 7. B

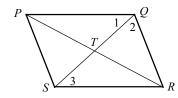
Chapter 18 Practice Test

1. C 2. B 3. 10.5 4. 174 5. D 6. 14 7. A 8. C 9. D 10. A

Answers and Explanations

Section 18-1

1. 4



 $PT = \frac{1}{2}PR$ Diagonals of \Box bisect each other. $x + 2y = \frac{1}{2}(32) = 16$ Substitution ST = TQ Diagonals of \Box bisect each other. 8x - y = 26 Substitution

$$2(8x - y) = 2(26)$$
 Multiply each side by 2.
 $16x - 2y = 52$ Simplify.
Add $x + 2y = 16$ and $16x - 2y = 52$.

$$16x - 2y = 52$$

$$+ \underbrace{x + 2y = 16}_{17x = 68}$$

$$x = 4$$

2. 6

Substitute 4 for x into the equation x + 2y = 16. 4 + 2y = 16

$$2y = 12$$
$$y = 6$$

3. 112

 $m \angle 3 = m \angle 1$ If $\overline{PQ} \parallel \overline{RS}$, Alternate Interior $\angle s$ are \cong . $a^2 - 7 = 6a$ Substitution $a^2 - 6a - 7 = 0$ Make one side 0. (a - 7)(a + 1) = 0 Factor. a = 7 or a = -1

Discard a = -1, because the measure of angles in parallelogram are positive.

$$m \angle 1 = 6a = 6(7) = 42$$

 $m \angle 2 = 10a = 10(7) = 70$
 $m \angle PQR = m \angle 1 + m \angle 2$
 $= 42 + 70$
 $= 112$

4. 68

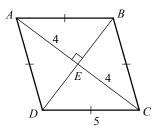
Since $\overline{PQ} \parallel \overline{RS}$, consecutive interior angles are supplementary. Thus, $m \angle PQR + m \angle QRS = 180$.

$$112 + m \angle QRS = 180 \qquad m \angle PQR = 112$$
$$m \angle QRS = 68$$

5. 70

$$m \angle QTR = m \angle PRS + m \angle 3$$
 Exterior Angle Theorem $m \angle 3 = m \angle 1 = 42$ Given $= 4(7) = 28$ $= 7$ $= 42$ Substitution $= 70$

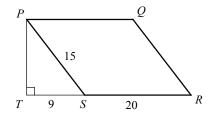
6. 24



$$CE^2 + DE^2 = CD^2$$
 Pythagorean Theorem
 $4^2 + DE^2 = 5^2$
 $DE^2 = 9$
 $DE = 3$
Area of $ABCD = \frac{1}{2}AC \cdot BD = \frac{1}{2}(8)(6) = 24$

304 Chapter 18

7. 240

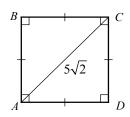


$$PT^2 + ST^2 = PS^2$$
 Pythagorean Theorem
 $PT^2 + 9^2 = 15^2$
 $PT^2 = 15^2 - 9^2 = 144$
 $PT = \sqrt{144} = 12$

Area of $PQRS = SR \times PT = 20 \times 12 = 240$.

Section 18-2

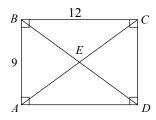
1. 25



Let
$$AD = CD = s$$
.
 $AD^2 + CD^2 = (5\sqrt{2})^2$ Pythagorean Theorem
 $s^2 + s^2 = 50$
 $2s^2 = 50$
 $s^2 = 25$

Area of $ABCD = s^2 = 25$.

2. 7.5



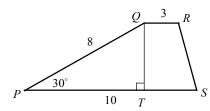
$$AC^2 = AB^2 + BC^2$$
 Pythagorean Theorem $AC^2 = 9^2 + 12^2 = 225$ Substitution $AC = \sqrt{225} = 15$ Diagonals of rectangle bisect each other.
$$= \frac{1}{2}AC$$
 Diagonals of rectangle bisect each other.

3. 27

Area of rectangle $ABCD = 12 \times 9 = 108$. In a rectangle, diagonals divide the rectangle into four triangles of equal area. Therefore,

Area of $\triangle CED = \frac{1}{4}$ the area of rectangle *ABCD* = $\frac{1}{4}(108) = 27$.

4. C



Draw \overline{QT} , which is perpendicular to \overline{PS} , to make triangle PQT, a 30° - 60° - 90° triangle.

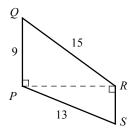
In a 30°-60°-90° triangle, the hypotenuse is twice as long as the shorter leg. Therefore,

$$QT = \frac{1}{2}PQ = \frac{1}{2}(8) = 4.$$

Area of trapezoid $PQRS = \frac{1}{2}(PS + QR) \cdot QT$

$$=\frac{1}{2}(10+3)\cdot 4=26$$

5. D



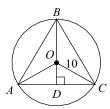
$$PR^2 + PQ^2 = QR^2$$
 Pythagorean Theorem $PR^2 + 9^2 = 15^2$ Substitution $PR^2 = 15^2 - 9^2 = 144$ $PR = \sqrt{144} = 12$ $12^2 + RS^2 = 13^2$ Pythagorean Theorem $RS^2 = 13^2 - 12^2 = 25$ $RS = \sqrt{25} = 5$

Area of trapezoid PQRS

$$= \frac{1}{2}(PQ + RS) \cdot PR = \frac{1}{2}(9+5) \cdot 12$$
$$= 84$$

Section 18-3

1. 120



$$m\angle AOB = m\angle BOC = m\angle AOC = \frac{1}{3}(360) = 120$$

2. 5

$$m\angle COD = \frac{1}{2} \, m\angle AOC = \frac{1}{2}(120) = 60$$

Since triangle COD is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the hypotenuse is twice as long as the shorter leg.

Therefore, $OD = \frac{1}{2}CO = \frac{1}{2}(10) = 5$.

3. 15

In a circle all radii are equal in measure. Therefore, AO = BO = CO = 10. BD = BO + OD = 10 + 5 = 15

4. D

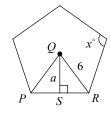
In a 30° - 60° - 90° triangle, the longer leg is $\sqrt{3}$ times as long as the shorter leg. Therefore,

$$CD = \sqrt{3}OD = 5\sqrt{3}$$
$$AC = 2CD = 10\sqrt{3}$$

Area of $\triangle ABC$

$$= \frac{1}{2}(AC)(BD) = \frac{1}{2}(10\sqrt{3})(15) = 75\sqrt{3}$$

5. 108



The measure of each interior angle of a regular n-sided polygon is $\frac{(n-2)180}{n}$. Therefore,

$$x = \frac{(5-2)180}{5} = 108$$
.

6. 36

$$m \angle PQR = \frac{360}{5} = 72$$

 $m \angle RQS = \frac{1}{2} m \angle PQR = \frac{1}{2} (72) = 36$

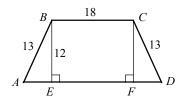
7. B

In triangle RQS, QR is the hypotenuse and QS is adjacent to $\angle RQS$. Therefore the cosine ratio can be used to find the value of a.

$$\cos \angle RQS = \frac{\text{adjacent to } \angle RQS}{\text{hypotenuse}} = \frac{a}{6}$$

Chapter 18 Practice Test

1. C



Pythagorean Theorem

$$AE^2 + 12^2 = 13^2$$

$$AE^2 = 13^2 - 12^2 = 25$$

 $AE^2 + BE^2 = AB^2$

$$AE = \sqrt{25} = 5$$

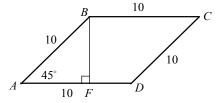
Also
$$DF = 5$$
.

$$AD = AE + EF + DF = 5 + 18 + 5 = 28$$

Area of trapezoid = $\frac{1}{2}(AD + BC) \cdot BF$

$$=\frac{1}{2}(28+18)\cdot 12=276$$

2. B



Draw \overline{BF} perpendicular to \overline{AD} to form a 45° - 45° - 90° triangle.

306 Chapter 18

In a 45° - 45° - 90° triangle, the hypotenuse is $\sqrt{2}$ times as long as a leg. Therefore, $\sqrt{2}BF = AB$.

$$\sqrt{2}BF = 10$$
 Substitutio

$$BF = \frac{10}{\sqrt{2}} = \frac{10 \cdot \sqrt{2}}{\sqrt{2} \cdot \sqrt{2}} = \frac{10\sqrt{2}}{2} = 5\sqrt{2}$$

Area of rhombus ABCD

$$= \frac{1}{2}AD \cdot BF = \frac{1}{2}(10)(5\sqrt{2}) = 25\sqrt{2}$$

3. 10.5

The length of the midsegment of a trapezoid is the average of the lengths of the bases. Therefore,

$$EO = \frac{1}{2}(TP + RA)$$
.
 $18 = \frac{1}{2}(TP + 15)$ Substitution
 $2 \times 18 = 2 \times \frac{1}{2}(TP + 15)$
 $36 = TP + 15$
 $21 = TP$
In $\triangle TRP$, $EZ = \frac{1}{2}TP = \frac{1}{2}(21) = 10.5$.

4. 174

Let w = the width of the rectangle in meters, then 2w+6 = the length of the rectangle in meters.

Area of rectangle = length \times width

$$=(2w+6)\times w=2w^2+6w$$
.

Since the area of the rectangle is 1,620 square meters, you can set up the following equation.

$$2w^2 + 6w = 1620$$

$$2w^2 + 6w - 1620 = 0$$
 Make one side 0.

$$2(w^2 + 3w - 810) = 0$$
 Common factor is 2.

Use the quadratic formula to solve the equation, $w^2 + 3w - 810 = 0$.

$$w = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$= \frac{-3 \pm \sqrt{3^2 - 4(1)(-810)}}{2(1)}$$
$$= \frac{-3 \pm \sqrt{3249}}{2} = \frac{-3 \pm 57}{2}$$

Since the width is positive, $w = \frac{-3 + 57}{2} = 27$.

The length is 2w + 6 = 2(27) + 6 = 60.

The perimeter of the rectangle is 2(length + width) = 2(60 + 27) = 174

5. D

Area of an equilateral triangle with side length of $a = \frac{\sqrt{3}}{4}a^2$. Since the area of the equilateral

triangle is given as $25\sqrt{3}$, you can set up the following equation.

$$\frac{\sqrt{3}}{4}a^2 = 25\sqrt{3}$$
$$a^2 = 25\sqrt{3} \cdot \frac{4}{\sqrt{3}} = 100$$

The area of each square is a^2 , or 100, so the sum of the areas of the three squares is 3×100 , or 300.

6. 14

Let w = the width of the rectangle. The perimeter of the rectangle is given as 5x. Perimeter of rectangle = 2(length + width)

$$5x = 2(\frac{3}{2}x + w)$$
$$5x = 3x + 2w$$
$$2x = 2w$$

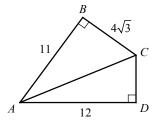
Area of rectangle = length \times width = 294

$$\frac{3}{2}x \cdot x = 294$$

$$x^2 = 294 \cdot \frac{2}{3} = 196$$

$$x = \sqrt{196} = 14$$

7. A



$$AC^2 = AB^2 + BC^2$$
 Pythagorean Theorem $AC^2 = 11^2 + (4\sqrt{3})^2$ Substitution $AC^2 = 121 + 48 = 169$ $AC = \sqrt{169} = 13$ $AC^2 = AD^2 + CD^2$ Pythagorean Theorem $169 = 12^2 + CD^2$ Substitution

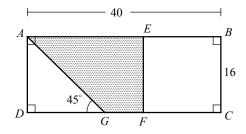
$$25 = CD^2$$
$$5 = CD$$

The area of region ABCD is the sum of the area of ΔABC and the area of ΔADC .

Area of the region ABCD

$$= \frac{1}{2}(11)(4\sqrt{3}) + \frac{1}{2}(12)(5)$$
$$= 22\sqrt{3} + 30$$

8. C



Since BCFE is a square,

$$BC = BE = CF = EF = 16$$
.

$$AE = AB - BE$$
$$= 40 - 16 = 24$$

Triangle AGD is a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle.

In a 45°-45°-90° triangle, the length of the two legs are equal in measure. Therefore,

$$AD = DG = 16$$
.

$$FG = DC - DG - CF$$

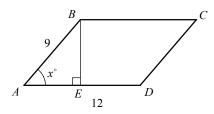
= $40 - 16 - 16 = 8$

Area of the shaded region

$$=\frac{1}{2}(AE+FG)\cdot EF$$

$$=\frac{1}{2}(24+8)\cdot 16=256$$

9. D



Draw \overline{BE} perpendicular to \overline{AD} .

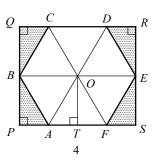
In
$$\triangle ABE$$
, $\sin x^{\circ} = \frac{BE}{\Omega}$.

Therefore, $BE = 9 \sin x^{\circ}$.

Area of parallelogram ABCD

$$= AD \times BE = 12 \times 9 \sin x^{\circ}$$

10. A



Draw the diagonals of a regular hexagon, \overline{AD} ,

$$\overline{BE}$$
, and \overline{CF} .

$$BE = BO + OE = 8$$
 and $OR = BE = 8$

Since ABCDEF is a regular hexagon, the diagonals intersect at the center of the hexagon. Let the point of intersection be O. The diagonals divide the hexagon into 6 equilateral triangles with side lengths of 4. Area of each equilateral triangle

with side lengths of 4 is $\frac{\sqrt{3}}{4}(4)^2 = 4\sqrt{3}$.

Draw \overline{OT} perpendicular to \overline{PS} .

Triangle AOT is a 30° - 60° - 90° triangle.

Therefore, $AT = \frac{1}{2}AO = \frac{1}{2}(4) = 2$ and

$$OT = \sqrt{3}AT = 2\sqrt{3} .$$

In rectangle PQRS, $RS = 2OT = 2(2\sqrt{3}) = 4\sqrt{3}$.

Area of rectangle $PQRS = QR \times RS$

$$= 8 \times 4\sqrt{3} = 32\sqrt{3}$$
.

Area of regular hexagon ABCDEF

 $= 6 \times \text{area of the equilateral triangle}$

$$= 6 \times 4\sqrt{3} = 24\sqrt{3}$$

Area of shaded region

= area of rectangle - area of hexagon

$$=32\sqrt{3}-24\sqrt{3}=8\sqrt{3}$$
.