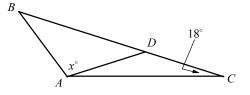
Answer Key					
Section 17-1					
1. A	2. D	3.5	4. D	5. C	
Section 17-2					
1. C	2. B	3. C	4. A		
Section 17-3					
1. D	2. C	3. B	4. A		
Section 17-4					
1. D	2. A	3. C	4. C		
Chapter 17 Practice Test					
1. B 6. A	2. A 7. 10.4	3. B 8. 45	4. C 9. 240	5. D	

Answers and Explanations

Section 17-1

1. A

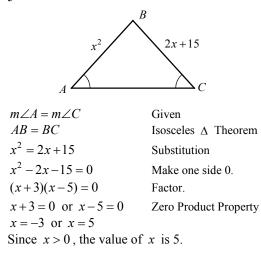
3x - 40 = x + 48	Exterior Angle Theorem
3x - 40 - x = x + 48 - x	Subtract x from each side.
2x - 40 = 48	Simplify.
2x = 88	Add 40 to each side.
<i>x</i> = 44	

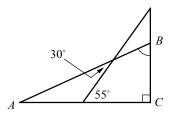


AD = DCGiven $m \angle DAC = m \angle DCA = 18$ Isosceles Δ Theorem $m \angle BDA$ Exterior \angle Theorem $= m \angle DCA + m \angle DAC$ $m \angle BDA = 18 + 18$ $m \angle BDA = 36$ Simplify.AB = ADGiven $m \angle DBA = m \angle BDA = 36$ Isosceles Δ Theorem

In triangle ABD, the angle sum is 180.

Thus, x + 36 + 36 = 180. Solving the equation for x gives x = 108. 3. 5



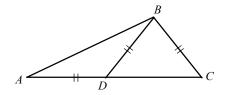


 $m \angle A + 30 = 55$ $m \angle A = 25$ $m \angle A + m \angle B = 90$

Exterior Angle Theorem The acute $\angle s$ of a right \triangle are complementary. $m \angle A = 25$.

 $25 + m \angle B = 90$ $m \angle B = 65$

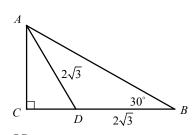
5. C



AD = BDGiven $m \angle ABD = m \angle A$ Isosceles Δ Theorem $m \angle A = 26$ Given $m \angle ABD = 26$ $m \angle A = 26$ $m \angle BDC$ Exterior ∠ Theorem $= m \angle A + m \angle ABD$ $m \angle BDC = 26 + 26 = 52$ $m \angle A = m \angle ABD = 26$ BD = BCGiven $m \angle C = m \angle BDC$ Isosceles Δ Theorem $m \angle C = 52$ $m \angle BDC = 52$ $m \angle C + m \angle BDC + m \angle DBC = 180$ Angle Sum Theorem $52 + 52 + m \angle DBC = 180$ $m \angle C = m \angle BDC = 52$ $m \angle DBC = 76$

Section 17-2

1. C



AD = BDGiven $m \angle BAD = m \angle B = 30$ Isosceles Δ Theorem $m \angle ADC = m \angle BAD + m \angle B$ Exterior \angle Theorem $m \angle ADC = 30 + 30 = 60$ $m \angle BAD = m \angle B = 30$ ΔADC is a 30°-60°-90° triangle.

In a 30° - 60° - 90° triangle, the hypotenuse is twice as long as the shorter leg. Therefore, AD = 2CD $2\sqrt{3} - 2CD$

$$2\sqrt{3} = 2CL$$
$$\sqrt{3} = CD.$$

$$BC = BD + CD = 2\sqrt{3} + \sqrt{3} = 3\sqrt{3}$$

Triangle *ABC* is also a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle. In a 30°-60°-90° triangle, the longer leg is $\sqrt{3}$ times as long as the shorter leg. Therefore,

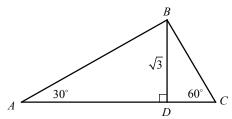
$$BC = \sqrt{3}AC$$

$$3\sqrt{3} = \sqrt{3}AC$$

$$3 = AC.$$

$$AB = 2AC = 2 \times 3 = 6$$

2. B



In the figure above, $\triangle ABD$ and $\triangle BCD$ are $30^{\circ}-60^{\circ}-90^{\circ}$ triangles.

In a 30° - 60° - 90° triangle, the hypotenuse is twice as long as the shorter leg and the longer leg is $\sqrt{3}$ times as long as the shorter leg. In $\triangle ABD$,

$$AB = 2BD = 2\sqrt{3}$$
$$AD = \sqrt{3}BD = \sqrt{3} \cdot \sqrt{3} = 3$$
.
In ΔBCD ,
$$BD = \sqrt{3}CD$$
$$\sqrt{3} = \sqrt{3}CD$$

$$I = CD$$

$$BC = 2CD = 2 \cdot 1 = 2$$

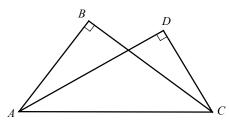
perimeter of $\triangle ABC$

$$= AB + BC + AC$$

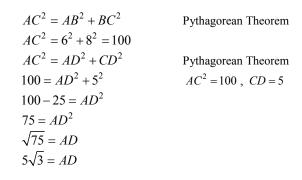
$$= 2\sqrt{3} + 2 + (3 + 1)$$

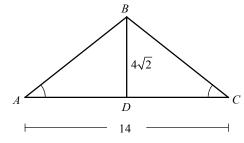
$$= 2\sqrt{3} + 6$$

3. C



Note: Figure not drawn to scale.





Note: Figure not drawn to scale.

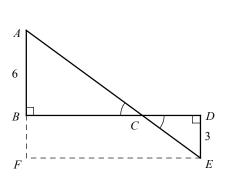
AD = CD = 7Definition of segment bisector $AB^2 = BD^2 + AD^2$ Pythagorean Theorem $AB^2 = (4\sqrt{2})^2 + 7^2$ Substitution = 32 + 49 = 81 $AB = \sqrt{81} = 9$ AB = BCPerimeter of $\triangle ABC$ = AB + BC + AC

=9+9+14=32

Square root both sides.

Isosceles Triangle Theorem

Section 17-3



Draw \overline{EF} , which is parallel and congruent to \overline{BD} . Extend \overline{AB} to point F. Since $\overline{EF} \parallel \overline{BD}$, $\angle F$ is a right angle.

$$BD = EF = 12 \text{ and } DE = BF = 3$$

$$AF = AB + BF = 6 + 3 = 9$$

$$AE^{2} = AF^{2} + EF^{2}$$
 Pythagorean Theorem

$$= 9^{2} + 12^{2}$$

$$= 225$$

$$AE = \sqrt{225} = 15$$

2. C



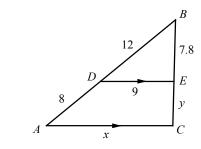
Note: Figure not drawn to scale.

$\angle B \cong \angle D$	Given
$\angle ACB \cong \angle ECD$	Vertical $\angle s$ are \cong .
$\Delta ACB \sim \Delta ECD$	AA similarity

If two triangles are similar, their corresponding sides are proportional.

 $\frac{BC}{DC} = \frac{AC}{EC}$ $\frac{16}{10} = \frac{AC}{11}$ $10AC = 16 \times 11$ AC = 17.6

3. B



$$\frac{BD}{DE} = \frac{BA}{AC} \implies \frac{12}{9} = \frac{20}{x} \implies 12x = 9 \cdot 20$$
$$\implies x = 15$$

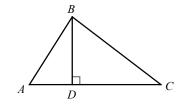
4. A

$$\frac{BD}{DA} = \frac{BE}{EC} \implies \frac{12}{8} = \frac{7.8}{y} \implies 12y = 8 \times 7.8$$
$$\implies y = 5.2$$

Section 17-4

1. D

Area of triangle $ABC = \frac{1}{2}BC \cdot AC$ $= \frac{1}{2}(15)AC = 60$ $\Rightarrow 7.5AC = 60 \Rightarrow AC = 8$ $AB^2 = AC^2 + BC^2$ Pythagorean Theorem $AB^2 = 8^2 + 15^2$ = 289 $AB = \sqrt{289} = 17$ Perimeter of $\triangle ABC = AB + BC + AC$ = 17 + 15 + 8 = 40



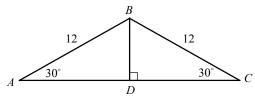
Let BD = h and let AC = b. If BD was increased by 50 percent, the new BDwill be h+0.5h, or 1.5h. If AC was reduced by 50 percent, the new AC

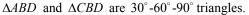
If AC was reduced by 50 percent, the new AC will be b - 0.5b, or 0.5b.

The new area of $\triangle ABC = \frac{1}{2} (\text{new } AC) \times (\text{new } BD)$

 $=\frac{1}{2}(0.5b)(1.5h) = \frac{1}{2}(0.75bh)$ Because the area of the triangle before change was $\frac{1}{2}(bh)$, the area has decreased by 25 percent.

3. C





In a 30°-60°-90° triangle, the hypotenuse is twice as long as the shorter leg and the longer leg is $\sqrt{3}$ times as long as the shorter leg.

$$AB = 2BD$$

$$12 = 2BD$$

$$6 = BD$$

$$AD = \sqrt{3}BD$$

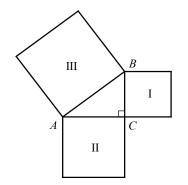
$$AD = \sqrt{3}(6) = 6\sqrt{3}$$

$$AC = 2AD = 12\sqrt{3}$$

Area of $\triangle ABC = \frac{1}{2}AC \cdot BD = \frac{1}{2}(12\sqrt{3})(6)$

$$= 36\sqrt{3}$$

4. C



The area of a square is the square of the length of any side.

The area of square region $I = BC^2 = 80$. The area of square region $II = AC^2 = 150$.

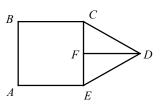
The area of square region II = AC^{2} = 150. The area of square region III = AB^{2}

$$AB^2 = BC^2 + AC^2$$
 Pythagorean Theorem
= 80 + 150 = 230

Therefore, the area of square region III is 230.

Chapter 17 Practice Test

1. B



If the area of square *ABCD* is $4x^2$, the length of the side of square *ABCD* is 2x.

Drawing \overline{DF} , a perpendicular bisector of \overline{CE} , makes two 30°-60°-90° triangles, ΔCDF and ΔEDF .

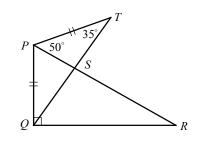
$$CE = 2x$$

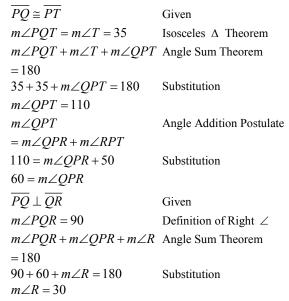
$$CF = \frac{1}{2}CE = \frac{1}{2}(2x) = x$$

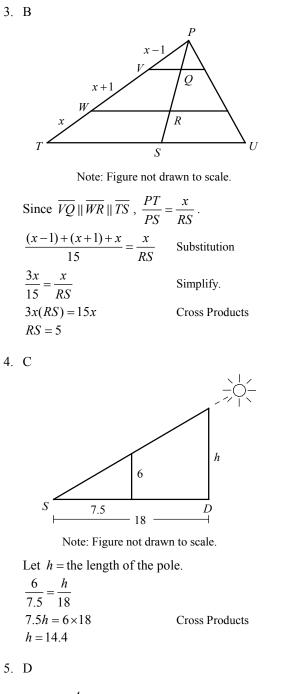
$$DF = \sqrt{3}CF = \sqrt{3}x$$
Area of $\triangle CDE = \frac{1}{2}CE \cdot DF = \frac{1}{2}(2x)(\sqrt{3}x)$

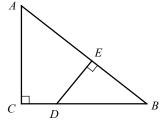
$$= \sqrt{3}x^{2}$$

2. A

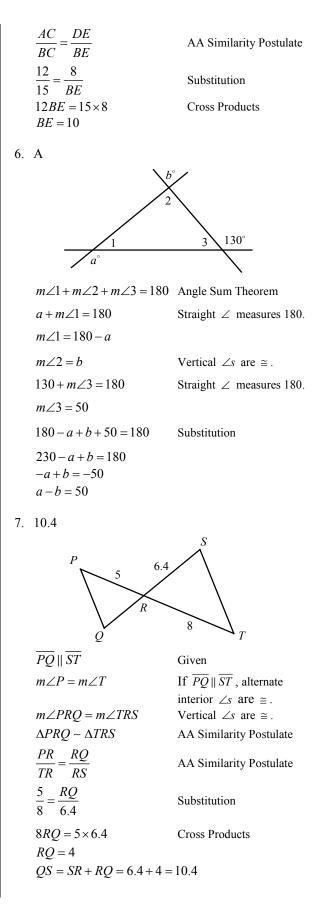




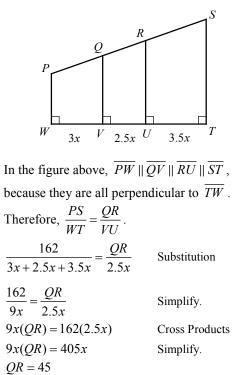




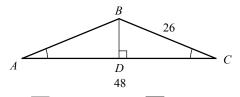
 $m \angle C = m \angle BED$ All right $\angle s$ are equal. $m \angle B = m \angle B$ **Reflexive Property** $\Delta ABC \sim \Delta DBE$ AA Similarity Postulate



8. 45



9. 240



Draw \overline{BD} perpendicular to \overline{AC} . Since $\triangle ABC$ is an isosceles triangle, \overline{BD} bisects \overline{AC} .

Therefore, $AD = CD = \frac{1}{2}AC = \frac{1}{2}(48) = 24$. $CD^2 + BD^2 = BC^2$ Pythagorean Theorem $24^2 + BD^2 = 26^2$ $576 + BD^2 = 676$ $BD^2 = 100$ BD = 10Area of $\triangle ABC = \frac{1}{2}(AC)(BD)$. $= \frac{1}{2}(48)(10)$ = 240