16-1. Lines, Segments, and Rays

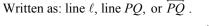
A **line** is a straight arrangement of points and extends in two directions without ending.

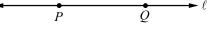
A line is often named by a lower-case script letter. If the names of two points on a line are known, then the line can be named by those points.

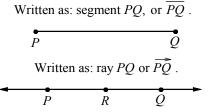
A **segment** is a part of a line and consists of two endpoints and all points in between.

A **ray** is a part of a line. It has one endpoint and extends forever in one direction.

Two rays \overrightarrow{RP} and \overrightarrow{RQ} are called opposite rays if points R, P, and Q are collinear and R is between P and Q.







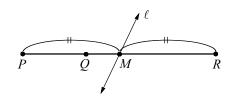
The length of \overline{PQ} , written as PQ, is the distance between the point P and point Q. Segment Addition Postulate

If Q is between P and R, then PQ + QR = PR.

Definition of Midpoint

If *M* is the **midpoint** of \overline{PR} , then $PM = MR = \frac{1}{2}PR$.

A **segment bisector** is a line or a segment that intersects a segment at its midpoint.



Line ℓ is a segment bisector.

Example 1 \Box Points A, B, M and C lie on the line as shown below. Point M is the midpoint of \overline{AC} .

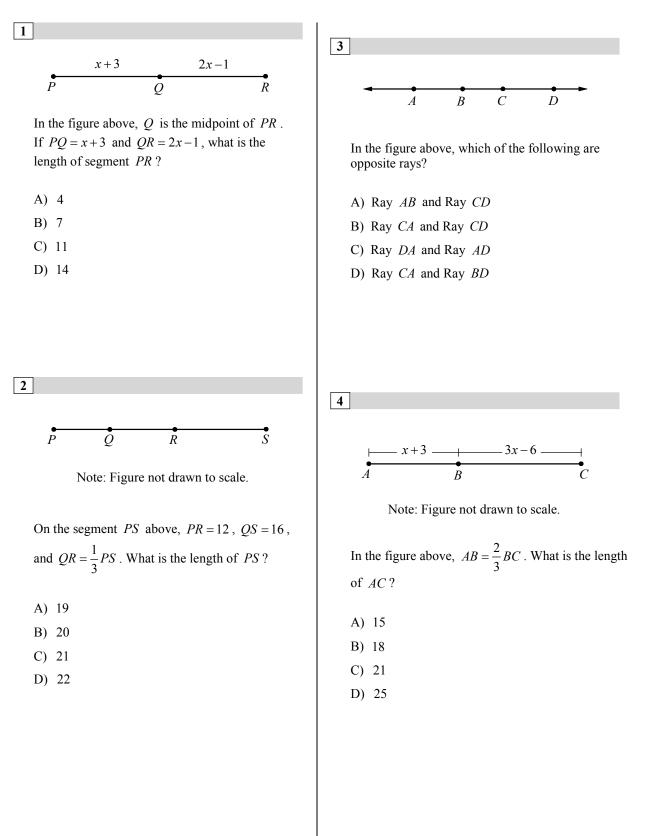
a. Which ray is opposite to ray BC?

b. If
$$BM = 6$$
 and $AB = \frac{2}{3}MC$, what is the length of AM ?

Solution \square a. Ray *BA*

b. Let
$$AB = x$$
.
 $AM = AB + BM = x + 6$
 $AM = MC$
 $x + 6 = \frac{3}{2}x$
 $x = 12$
 $AM = x + 6 = 12 + 6 = 18$
Segment addition postulate
Definition of midpoint
Substitution. If $AB = \frac{2}{3}MC$, $MC = \frac{3}{2}AB = \frac{3}{2}x$
Solve for x .
Substitute and simplify.

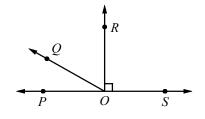
Exercises - Lines, Segments, and Rays



16-2. Angles

Angles are classified according to their measures.

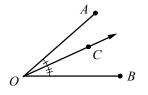
An acute angle measures between 0 and 90.	Ex. $\angle POQ$ and $\angle QOR$
A right angle measures 90.	Ex. $\angle POR$ and $\angle SOR$
An obtuse angle measures between 90 and 180.	Ex.∠QOS
A straight angle measures 180.	Ex.∠POS



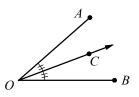
Angle Addition Postulate

If C is in the interior of $\angle AOB$, then $m \angle AOB = m \angle AOC + m \angle COB$.

An angle bisector divides an angle into two congruent angles.



 $m \angle AOB = m \angle AOC + m \angle COB$



If \overrightarrow{OC} is the angle bisector of $\angle AOB$, then $m \angle AOC = m \angle COB = \frac{1}{2} m \angle AOB$.

Special Pairs of Angles

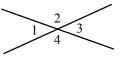
When two lines intersect, they form two pairs of vertical angles.

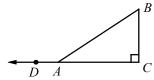
Vertical angles are congruent.

 $\angle 1 \cong \angle 3 \ (m \angle 1 = m \angle 3) \qquad \angle 2 \cong \angle 4 \ (m \angle 2 = m \angle 4)$

Two angles whose measures have a sum of 180 are called **supplementary angles**.

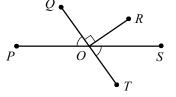
Two angles whose measures have a sum of 90 are called **complementary angles**.





 $\angle DAB$ and $\angle BAC$ are supplementary. $\angle B$ and $\angle BAC$ are complementary.

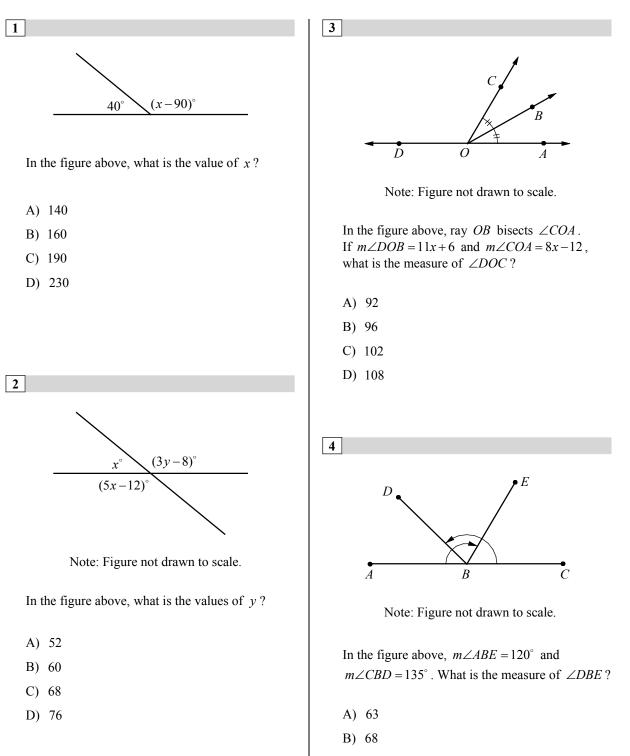
Example 1	In the figure shown at the right, $m \angle POQ = 55$.		
	Find the each of the following.		
	a. $m \angle SOT$ b. $m \angle ROT$ c. $m \angle POT$ d. $m \angle POR$		



Solution a. $m \angle SOT = m \angle POQ = 55$ b. $m \angle QOR + m \angle ROT = 180$ $90 + m \angle ROT = 180$ $m \angle ROT = 90$ c. $m \angle POQ + m \angle POT = 180$ $55 + m \angle POT = 180$ $m \angle POT = 125$ d. $m \angle POR = m \angle POQ + m \angle QOR$ $m \angle POR = 55 + 90 = 145$ Vertical angles are congruent.

Straight angle measures 180. $m \angle QOR = 90$ Solve for $m \angle ROT$. Straight angle measures 180. $m \angle POQ = 55$ Solve for $m \angle POT$. Angle Addition Postulate Substitution

Exercises - Angles



- C) 75
- D) 79

16-3. Parallel and Perpendicular Lines

For two parallel lines ℓ and *m* which are cut by the transversal *t* :

1) Corresponding Angles are equal in measure.

 $m \angle 1 = m \angle 5$ $m \angle 2 = m \angle 6$ $m \angle 3 = m \angle 7$ $m \angle 4 = m \angle 8$

2) Alternate Interior Angles are equal in measure.

$$m \angle 3 = m \angle 5$$
 $m \angle 4 = m \angle 6$

3) Alternate Exterior Angles are equal in measure.

$$m \angle 1 = m \angle 7$$
 $m \angle 2 = m \angle 8$

4) Consecutive(Same Side) Interior Angles are supplementary.

 $m \angle 3 + m \angle 6 = 180^{\circ}$ $m \angle 4 + m \angle 5 = 180^{\circ}$

Theorem

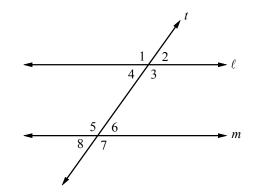
In a plane, if a line is perpendicular to one of two parallel lines, it is also perpendicular to the other.

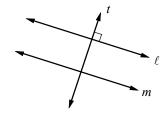
 $32 + m \angle 2 = 90$

 $m \angle 2 = 58$

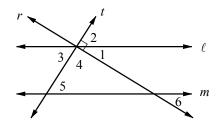
 $m \angle 4 = 90$

If $t \perp \ell$ and $\ell \parallel m$, then $t \perp m$.



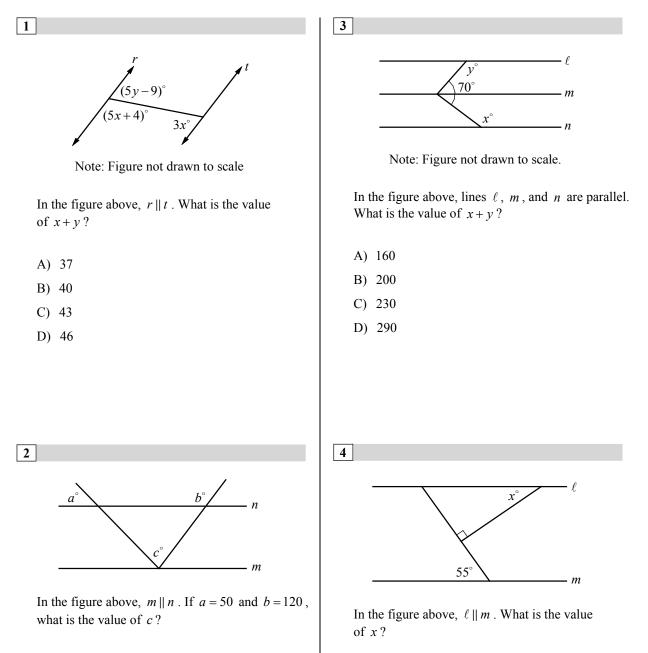


Example 1 \Box In the figure below, $\ell \parallel m$, $r \perp t$ and $m \angle 1 = 32$. Lines ℓ , r, and t intersect at one point. Find $m \angle 2$, $m \angle 3$, $m \angle 4$, and $m \angle 5$.



 $\square \quad m \angle 1 + m \angle 2 = 90$ Solution

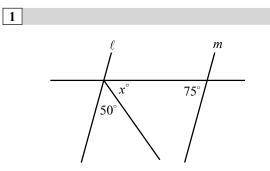
A right angle measures 90. Substitution Solve for $m \angle 2$. $m \angle 2 = m \angle 3 = 58$ Vertical angles are \cong . $m \angle 1 + m \angle 4 + m \angle 3 = 180$ A straight angle measures 180. $32 + m \angle 4 + 58 = 180$ Substitution Solve for $m \angle 4$. $m \angle 3 = m \angle 5 = 58$ Alternate Interior $\angle s$ are \cong . $m \angle 1 = m \angle 6 = 32$ Corresponding $\angle s$ are \cong .



- A) 50
- B) 60
- C) 70
- D) 80

- A) 30
- B) 35
- C) 40
- D) 45

Chapter 16 Practice Test

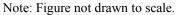


Note: Figure not drawn to scale.

- In the figure above, $\ell \parallel m$. What is the value of x?
- A) 45
- B) 50
- C) 55
- D) 60

2

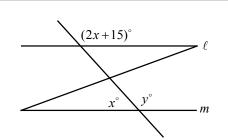




In the figure above, lines ℓ and m are parallel and \overline{BD} bisects $\angle ABC$. What is the value of x?

- A) 54
- B) 60
- C) 68
- D) 72

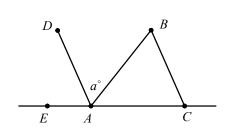
4



Note: Figure not drawn to scale.

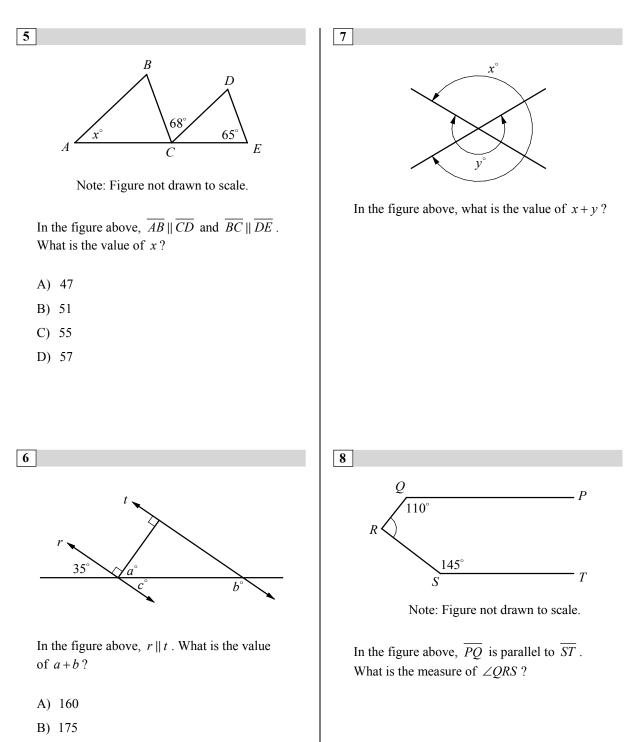
In the figure above, $\ell \parallel m$. What is the value of *y*?

- A) 120
- B) 125
- C) 130
- D) 135



In the figure above, $\overline{DA} \parallel \overline{BC}$ and \overline{AB} bisects $\angle DAC$. What is the measure of $\angle BCA$ in terms of *a*?

- A) 180 a
- B) 2*a*-180
- C) 180 2a
- D) 2*a*-90



- C) 185
- D) 200

Answer Key

Section 16	5-1			
1. D	2. C	3. B	4. D	
Section 16	5-2			
1. D	2. A	3. B	4. C	
Section 16	5-3			
1. A	2. C	3. D	4. B	
Chapter 16 Practice Test				
1. C	2. B	3. A	4. C	5. A
6. D	7.540	8.105		

Answers and Explanations

Section 16-1

1. D

$$x+3 \qquad 2x-1$$

$$PQ = QR \qquad Definition of Midpoint$$

$$x+3 = 2x-1 \qquad Substitution$$

$$x+3-x = 2x-1-x \qquad Subtract x \text{ from each side.}$$

$$3 = x-1 \qquad Simplify.$$

$$4 = x$$

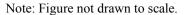
$$PR = PQ + QR \qquad Segment Addition Postulate$$

$$= x+3+2x-1 \qquad Substitution$$

2. C

= 3x + 2= 3(4) + 2 = 14

x = 4



Let $PS = x$, then QR	$=\frac{1}{3}PS=\frac{1}{3}x.$
PR = PQ + QR	Segment Addition Postulate
$12 = PQ + \frac{1}{3}x$	$PR = 12$ and $QR = \frac{1}{3}x$
$PQ = 12 - \frac{1}{3}x$	Solve for PQ.
QS = QR + RS	Segment Addition Postulate

$$16 = \frac{1}{3}x + RS$$

$$QS = 16 \text{ and } QR = \frac{1}{3}x$$

$$RS = 16 - \frac{1}{3}x$$

$$Solve \text{ for } RS$$

$$PS = PQ + QR + RS$$

$$Segment \text{ Addition Postulate}$$

$$x = (12 - \frac{1}{3}x) + \frac{1}{3}x + (16 - \frac{1}{3}x)$$

$$Substitution$$

$$x = 28 - \frac{1}{3}x$$

$$Simplify.$$

$$\frac{4}{3}x = 28$$

$$Add \quad \frac{1}{3}x \text{ to each side }.$$

$$\frac{3}{4} \cdot \frac{4}{3}x = \frac{3}{4} \cdot 28$$

$$Multiply \quad \frac{3}{4} \text{ by each side.}$$

$$x = 21$$
Therefore, $PS = x = 21$.

3. B

Ray CA and Ray CD are opposite rays, because points A, C, and D are collinear and C is between A and D.

4. D

$$A \qquad B \qquad C$$

Note: Figure not drwan to scale.

$$AB = \frac{2}{3}BC$$
 Given

$$x + 3 = \frac{2}{3}(3x - 6)$$
 Substitution

$$x + 3 = 2x - 4$$
 Simplify.

$$7 = x$$
 Solve for x.

$$AC = AB + BC$$
 Segment Addition Postulate

$$= x + 3 + 3x - 6$$
 Substitution

$$= 4x - 3$$
 Simplify.

$$= 4(7) - 3$$

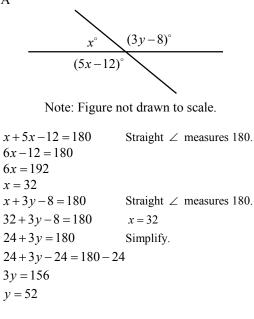
$$x = 7$$

$$= 25$$

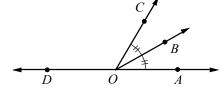
Section 16-2

1. D

40+x-90 = 180 Straight ∠ measures 180. x-50 = 180 Simplify. x-50+50 = 180+50 Add 50 to each side. x = 230 2. A



3. B

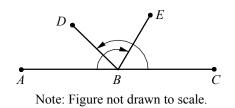


Note: Figure not drawn to scale.

$m \angle BOA = \frac{1}{2}m \angle COA$	Definition of \angle bisector
$m \angle BOA = \frac{1}{2}(8x - 12)$	Substitution
$m \angle BOA = 4x - 6$	Simplify.
$m \angle DOB + m \angle BOA = 180$	Straight \angle measures 180.
11x + 6 + 4x - 6 = 180	Substitution
15x = 180	Simplify.
<i>x</i> = 12	

Thus, $m \angle COA = 8x - 12 = 8(12) - 12 = 84$.

 $m \angle DOC + m \angle COA = 180$ Straight \angle measures 180. $m \angle DOC + 84 = 180$ $m \angle COA = 84$ $m \angle DOC = 96$



Let
$$m \angle DBE = x$$

 $m \angle ABE$
 $= m \angle ABD + m \angle DBE$ Angle Addition Postulate
 $120 = m \angle ABD + x$ Substitution
 $120 - x = m \angle ABD$
 $m \angle ABD + m \angle CBD = 180$ Straight \angle measures 180.
 $120 - x + 135 = 180$ Substitution
 $255 - x = 180$ Simplify.
 $x = 75$

Therefore, $m \angle DBE = x = 75$.

Section 16-3

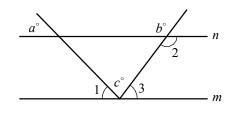
1. A

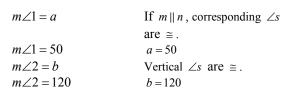


Note: Figure not drawn to scale

5x + 4 + 3x = 180	If $r \parallel t$, consecutive interior
	$\angle s$ are supplementary.
8x + 4 = 180	Simplify.
8x = 176	
<i>x</i> = 22	
5x + 4 + 5y - 9 = 180	Straight \angle measures 180.
5x - 5 + 5y = 180	Simplify.
5(22) - 5 + 5y = 180	<i>x</i> = 22
110 - 5 + 5y = 180	Simplify.
105 + 5y = 180	Simplify.
5 <i>y</i> = 75	Simplify.
<i>y</i> = 15	

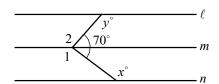
Therefore, x + y = 22 + 15 = 37.





$m\angle 2 + m\angle 3 = 180$	If $m \parallel n$, consecutive interior
	$\angle s$ are supplementary.
$120 + m \angle 3 = 180$	$m \angle 2 = 120$
$m \angle 3 = 60$	
$m \angle 1 + c + m \angle 3 = 180$	Straight ∠ measures 180.
50 + c + 60 = 180	$m \angle 1 = 50$ and $m \angle 3 = 60$
c + 110 = 180	Simplify.
0 1110 100	Simpiny.

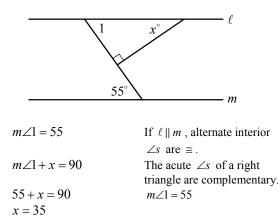
3. D



Note: Figure not drawn to scale.

$m \angle 1 = x$	If $m \parallel n$, alternate interior
<i>(</i>)	$\angle s$ are \cong .
$m \angle 2 = y$	If $\ell \parallel m$, alternate interior
	$\angle s \text{ are } \cong$.
$m \angle 1 + m \angle 2 + 70 = 360$	There are 360° in a circle.
x + y + 70 = 360	$m \angle 1 = x$ and $m \angle 2 = y$
x + y = 290	

4. B



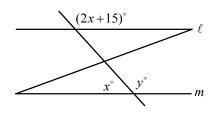
Chapter 16 Practice Test

1. C ℓ m 50° 75°

Note: Figure not drawn to scale.

$$50 + x + 75 = 180$$
If $\ell \parallel m$, consecutive interior $\angle s$ are supplementary. $125 + x = 180$ Simplify. $x = 55$

2. B

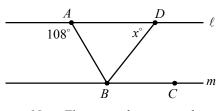


Note: Figure not drwan to scale.

$\angle s$ are supplementary. $x + y = 180$ Straight \angle measures 180.
$x + y = 180$ Straight \angle measures 180.
$x + (2x + 15) = 180 \qquad y = 2x + 15$
3x + 15 = 180 Simplify.
3x = 165
x = 55

Therefore, y = 2x + 15 = 2(55) + 15 = 125.

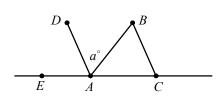
3. A



Note: Figure not drawn to scale.

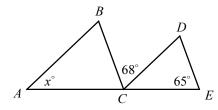
$$m \angle ABC = 108$$
If $\ell \parallel m$, alternate interior
 $\angle s$ are \cong . $m \angle DBC = \frac{1}{2}m \angle ABC$ Definition of \angle bisector $m \angle DBC = \frac{1}{2}(108)$ $m \angle ABC = 108$ $m \angle DBC = 54$ Simplify. $x = m \angle DBC$ If $\ell \parallel m$, alternate interior
 $\angle s$ are \cong . $x = 54$ $m \angle DBC = 54$

4. C



$m \angle BAC = m \angle DAB$ $m \angle BAC = a$	Definition of \angle bisector $m \angle DAB = a$
Since straight angles me $m \angle DAE + m \angle DAB + m$	· · · · · · · · · · · · · · · · · · ·
$m \angle DAE + a + a = 180$ $m \angle DAE = 180 - 2a$	$m \angle DAB = m \angle BAC = a$ Subtract $2a$.
$m \angle BCA = m \angle DAE$	If $DA \parallel BC$, corresponding

5. A



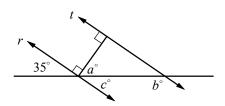
Note: Figure not drawn to scale.

$m \angle BCA = m \angle DEC$	If $DE \parallel BC$, corresponding
	$\angle s$ are \cong .
$m \angle BCA = 65$	$m \angle DEC = 65$
$m \angle DCE = x$	If $AB \parallel CD$, corresponding
	$\angle s$ are \cong .

Since straight angles measure 180, $m\angle BCA + m\angle BCD + m\angle DCE = 180$.

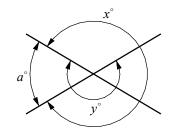
65 + 68 + x = 180	Substitution
133 + x = 180	Simplify.
x = 47	

6. D



c = 35Vertical $\angle s$ are \cong .a + c = 90 $\angle a$ and $\angle c$ are complementary.a + 35 = 90c = 35a = 55If r || t, consecutive interiorb + c = 180If r || t, consecutive interior $\angle s$ are supplementary.b + 35 = 180c = 35b = 145

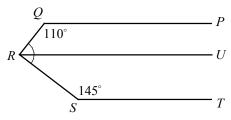
Therefore, a + b = 55 + 145 = 200.



Draw $\angle a$.

x + a = 360	360° in a circle.
x = 360 - a	Subtract <i>a</i> from each side.
y - a = 180	Straight ∠ measures 180.
y = 180 + a	Add <i>a</i> to each side.

Therefore, x + y = (360 - a) + (180 + a) = 540.



Note: Figure not drawn to scale.

Draw \overline{RU} , which is parallel to \overline{PQ} and \overline{ST} .

If two lines are parallel, then the consecutive interior angles are supplementary. Therefore, $m \angle PQR + m \angle QRU = 180$ and $m \angle RST + m \angle URS = 180$.

$110 + m \angle QRU = 180$	$m \angle PQR = 110$
$m \angle QRU = 70$	Subtract 110.
$145 + m \angle URS = 180$	$m \angle RST = 145$
$m \angle URS = 35$	Subtract 145.

By the Angle Addition Postulate, $m \angle QRS = m \angle QRU + m \angle URS$.

Substituting 70 for $m \angle QRU$ and 35 for $m \angle QRU$ gives $m \angle QRS = 70 + 35 = 105$.