Answer Key

Section 16-1

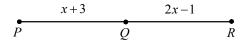
- 1. D
- 2. C
- 3. B
- 4. D

Section 16-2

- 1. D
- 2. A
- 3. B
- 4. C

Section 16-3

- 1. A
- 2. C
- 3. D
- 4. B


Chapter 16 Practice Test

- 1. C 6. D
- 2. B 7.540
- 3. A 8.105
- 4. C
- 5. A

Answers and Explanations

Section 16-1

1. D

PQ = QR

Definition of Midpoint

$$x + 3 = 2x - 1$$

Substitution

$$x + 3 - x = 2x - 1 - x$$

Subtract *x* from each side.

$$3 = x - 1$$

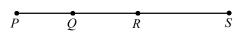
Simplify.

$$4 = x$$

PR = PQ + QR

Segment Addition Postulate

$$= x + 3 + 2x - 1$$


Substitution

$$= 3x + 2$$

$$= 3x + 2$$

= 3(4) + 2 = 14

x = 4

2. C

Note: Figure not drawn to scale.

Let
$$PS = x$$
, then $QR = \frac{1}{3}PS = \frac{1}{3}x$.

$$PR = PQ + QR$$

Segment Addition Postulate

$$12 = PQ + \frac{1}{2}x$$

 $12 = PQ + \frac{1}{3}x$ PR = 12 and $QR = \frac{1}{3}x$

$$PQ = 12 - \frac{1}{3}x$$

Solve for PQ.

$$QS = QR + RS$$

Segment Addition Postulate

$$16 = \frac{1}{3}x + RS$$
 $QS = 16$ and $QR = \frac{1}{3}x$

$$RS = 16 - \frac{1}{3}x$$
 Solve for RS .

PS = PQ + QR + RS Segment Addition Postulate

$$x = (12 - \frac{1}{3}x) + \frac{1}{3}x + (16 - \frac{1}{3}x)$$
 Substitution

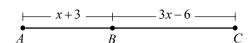
$$x = 28 - \frac{1}{3}x$$
 Simplify.

$$\frac{4}{2}x = 28$$

 $\frac{4}{2}x = 28$ Add $\frac{1}{3}x$ to each side.

$$\frac{3}{4} \cdot \frac{4}{3} x = \frac{3}{4} \cdot 28$$

 $\frac{3}{4} \cdot \frac{4}{3} x = \frac{3}{4} \cdot 28$ Multiply $\frac{3}{4}$ by each side.


$$x = 21$$

Therefore, PS = x = 21.

3. B

Ray CA and Ray CD are opposite rays, because points A, C, and D are collinear and C is between A and D.

4. D

Note: Figure not drwan to scale.

$$AB = \frac{2}{3}BC$$

Given

$$x+3 = \frac{2}{3}(3x-6)$$

Substitution

Solve for x.

$$x + 3 = 2x - 4$$

7 = x

Simplify.

$$AC = AB + BC$$
$$= x + 3 + 3x -$$

Segment Addition Postulate Substitution

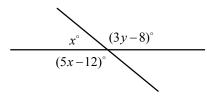
$$= x+3+3x-6$$
$$= 4x-3$$

Simplify.

$$=4(7)-3$$

= 25

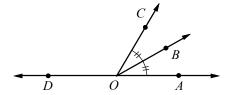
x = 7


Section 16-2

1. D

$$40+x-90=180$$
 Straight \angle measures 180.
 $x-50=180$ Simplify.
 $x-50+50=180+50$ Add 50 to each side.
 $x=230$

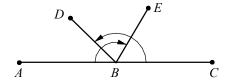
276 Chapter 16



Note: Figure not drawn to scale.

$$x+5x-12=180$$
 Straight \angle measures 180.
 $6x-12=180$
 $6x=192$
 $x=32$
 $x+3y-8=180$ Straight \angle measures 180.
 $32+3y-8=180$ Straight \angle measures 180.
 $24+3y=180$ Simplify.
 $24+3y-24=180-24$
 $3y=156$
 $y=52$

3. B

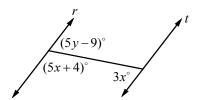

Note: Figure not drawn to scale.

$$m \angle BOA = \frac{1}{2}m \angle COA$$
 Definition of \angle bisector $m \angle BOA = \frac{1}{2}(8x - 12)$ Substitution $m \angle BOA = 4x - 6$ Simplify. $m \angle DOB + m \angle BOA = 180$ Straight \angle measures 180. $11x + 6 + 4x - 6 = 180$ Substitution $15x = 180$ Simplify. $x = 12$

Thus, $m \angle COA = 8x - 12 = 8(12) - 12 = 84$.

$$m\angle DOC + m\angle COA = 180$$
 Straight \angle measures 180.
 $m\angle DOC + 84 = 180$ $m\angle COA = 84$
 $m\angle DOC = 96$

4. C


Note: Figure not drawn to scale.

Let
$$m \angle DBE = x$$

 $m \angle ABE$
 $= m \angle ABD + m \angle DBE$ Angle Addition Postulate
 $120 = m \angle ABD + x$ Substitution
 $120 - x = m \angle ABD$
 $m \angle ABD + m \angle CBD = 180$ Straight \angle measures 180.
 $120 - x + 135 = 180$ Substitution
 $255 - x = 180$ Simplify.
 $x = 75$

Therefore, $m \angle DBE = x = 75$.

Section 16-3

1. A

Note: Figure not drawn to scale

$$5x + 4 + 3x = 180$$
 If $r \parallel t$, consecutive interior

 $8x + 4 = 180$
 Simplify.

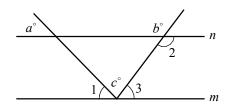
 $8x = 176$
 Simplify.

 $x = 22$
 Straight \angle measures 180.

 $5x - 5 + 5y = 180$
 Simplify.

 $5(22) - 5 + 5y = 180$
 Simplify.

 $10 - 5 + 5y = 180$
 Simplify.

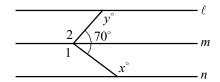

 $105 + 5y = 180$
 Simplify.

 $5y = 75$
 Simplify.

 $y = 15$
 Simplify.

Therefore, x + y = 22 + 15 = 37.

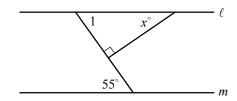
2. C



$$m \angle 1 = a$$
 If $m \parallel n$, corresponding $\angle s$ are \cong .
 $m \angle 1 = 50$ $a = 50$
 $m \angle 2 = b$ Vertical $\angle s$ are \cong .
 $m \angle 2 = 120$ $b = 120$

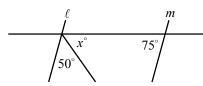
$m\angle 2 + m\angle 3 = 180$	If $m \parallel n$, consecutive interior
	$\angle s$ are supplementary.
$120 + m \angle 3 = 180$	$m\angle 2 = 120$
$m\angle 3 = 60$	
$m \angle 1 + c + m \angle 3 = 180$	Straight ∠ measures 180.
50 + c + 60 = 180	$m\angle 1 = 50$ and $m\angle 3 = 60$
c + 110 = 180	Simplify.

3. D


c = 70

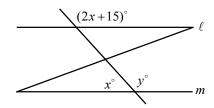
Note: Figure not drawn to scale.

$$m \angle 1 = x$$
 If $m \parallel n$, alternate interior $\angle s$ are \cong .
 $m \angle 2 = y$ If $\ell \parallel m$, alternate interior $\angle s$ are \cong .
 $m \angle 1 + m \angle 2 + 70 = 360$ There are 360° in a circle.
 $x + y + 70 = 360$ $m \angle 1 = x$ and $m \angle 2 = y$
 $x + y = 290$


4. B

 $m \angle 1 = 55$ If $\ell \parallel m$, alternate interior $\angle s$ are \cong . $m \angle 1 + x = 90$ The acute $\angle s$ of a right triangle are complementary. 55 + x = 90 $m \angle 1 = 55$

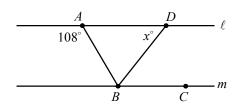
Chapter 16 Practice Test


1. C

Note: Figure not drawn to scale.

$$50 + x + 75 = 180$$
 If $\ell \parallel m$, consecutive interior $\angle s$ are supplementary.
 $125 + x = 180$ Simplify.
 $x = 55$

2. B



Note: Figure not drwan to scale.

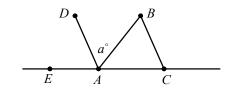
$$y = 2x + 15$$
 If $\ell \parallel m$, consecutive interior $\angle s$ are supplementary.
 $x + y = 180$ Straight \angle measures 180.
 $x + (2x + 15) = 180$ $y = 2x + 15$
 $3x + 15 = 180$ Simplify.
 $3x = 165$
 $x = 55$

Therefore, y = 2x + 15 = 2(55) + 15 = 125.

3. A

Note: Figure not drawn to scale.

$$m \angle ABC = 108$$
 If $\ell \parallel m$, alternate interior $\angle s$ are \cong .


 $m \angle DBC = \frac{1}{2} m \angle ABC$ Definition of \angle bisector

 $m \angle DBC = \frac{1}{2}(108)$ $m \angle ABC = 108$
 $m \angle DBC = 54$ Simplify.

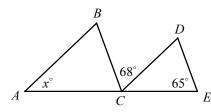
 $x = m \angle DBC$ If $\ell \parallel m$, alternate interior $\angle s$ are \cong .

 $x = 54$ $m \angle DBC = 54$

4. C

278 Chapter 16

 $m \angle BAC = m \angle DAB$ Definition of \angle bisector $m \angle BAC = a$ $m \angle DAB = a$

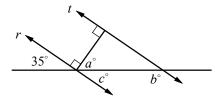

Since straight angles measure 180, $m\angle DAE + m\angle DAB + m\angle BAC = 180$.

 $m\angle DAE + a + a = 180$ $m\angle DAB = m\angle BAC = a$ $m\angle DAE = 180 - 2a$ Subtract 2a. $m\angle BCA = m\angle DAE$ If $DA \parallel BC$, correspond

If $DA \parallel BC$, corresponding $\angle s$ are \cong .

 $m \angle BCA = 180 - 2a$ $m \angle DAE = 180 - 2a$

5. A

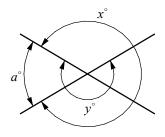

Note: Figure not drawn to scale.

 $m \angle BCA = m \angle DEC$ If $DE \parallel BC$, corresponding $\angle s$ are \cong . $m \angle BCA = 65$ $m \angle DCE = x$ If $AB \parallel CD$, corresponding $\angle s$ are \cong .

Since straight angles measure 180, $m\angle BCA + m\angle BCD + m\angle DCE = 180$.

65 + 68 + x = 180 Substitution 133 + x = 180 Simplify. x = 47

6. D

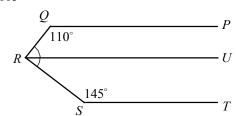


c=35 Vertical $\angle s$ are \cong . a+c=90 $\angle a$ and $\angle c$ are complementary. a+35=90 c=35 a=55 b+c=180 If $r \parallel t$, consecutive interior $\angle s$ are supplementary.

b + 35 = 180 c = 35

b = 145

Therefore, a + b = 55 + 145 = 200.



Draw $\angle a$.

x + a = 360 360° in a circle. x = 360 - a Subtract a from each side. y - a = 180 Straight \angle measures 180. y = 180 + a Add a to each side.

Therefore, x + y = (360 - a) + (180 + a) = 540.

8. 105

Note: Figure not drawn to scale.

Draw \overline{RU} , which is parallel to \overline{PQ} and \overline{ST} .

If two lines are parallel, then the consecutive interior angles are supplementary. Therefore, $m\angle PQR + m\angle QRU = 180$ and $m\angle RST + m\angle URS = 180$.

 $110 + m \angle QRU = 180$ $m \angle PQR = 110$
 $m \angle QRU = 70$ Subtract 110.

 $145 + m \angle URS = 180$ $m \angle RST = 145$
 $m \angle URS = 35$ Subtract 145.

By the Angle Addition Postulate, $m\angle QRS = m\angle QRU + m\angle URS$. Substituting 70 for $m\angle QRU$ and 35 for $m\angle QRU$ gives $m\angle QRS = 70 + 35 = 105$.