15-1. Trigonometric Ratios of Acute Angles

A ratio of the lengths of sides of a right triangle is called a **trigonometric ratio**. The six trigonometric ratios are **sine**, **cosine**, **tangent**, **cosecant**, **secant**, and **cotangent**.

Their abbreviations are sin, cos, tan, csc, sec, and cot, respectively. The six trigonometric ratios of any angle $0^\circ < \theta < 90^\circ$, sine, cosine, tangent, cosecant, secant, and cotangent, are defined as follows.

The sine and cosine are called **cofunctions**. In a right triangle ABC, $\angle A$ and $\angle B$ are complementary, that is, $m\angle A + m\angle B = 90$. Thus any trigonometric function of an acute angle is equal to the cofunction of the complement of the angle.

Complementary Angle Theorem

 $\sin \theta = \cos(90^\circ - \theta)$ $\cos \theta = \sin(90^\circ - \theta)$ If $\sin \angle A = \cos \angle B$, then $m\angle A + m\angle B = 90^\circ$.

Trigonometric Identities

$$
\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \qquad \sin^2 \theta + \cos^2 \theta = 1
$$

Example $1 \Box$ In the right triangle shown at the right, find $\cos\theta$ and $\tan\theta$ if $\sin\theta = \frac{2}{3}$.

Solution
$$
\Box
$$
 $\sin^2 \theta + \cos^2 \theta = 1$ Trigonometric identity
\n
$$
(\frac{2}{3})^2 + \cos^2 \theta = 1
$$
 Substitute $\frac{2}{3}$ for $\sin \theta$.
\n
$$
\cos^2 \theta = 1 - (\frac{2}{3})^2 = 1 - \frac{4}{9} = \frac{5}{9}
$$
\n
$$
\cos \theta = \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{9}} = \frac{\sqrt{5}}{3}
$$
\n
$$
\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{2/3}{\sqrt{5}/3} = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{\sqrt{5}\sqrt{5}} = \frac{2\sqrt{5}}{5}
$$

Example 2 \Box In a right triangle, θ is an acute angle. If $\sin \theta = \frac{4}{9}$, what is $\cos(90^\circ - \theta)$?

Solution \Box By the complementary angle property of sine and cosine, $\cos(90^\circ - \theta) = \sin \theta = \frac{4}{9}$.

Exercises - Trigonometric Ratios of Acute Angles

15-2. The Radian Measure of an Angle

One **radian** is the measure of a central angle θ whose intercepted arc has a length equal to the circle's radius. In the figure at the right, if length of the arc $AB = OA$,

then $m \angle AOB = 1$ radian.

Since the circumference of the circle is $2\pi r$ and

a complete revolution has degree measure 360° ,

 2π radians = 360°, or π radians = 180°.

The conversion formula π radians = 180° can be used to convert radians to degrees and vice versa.

1 radian =
$$
\frac{180^{\circ}}{\pi} \approx 57.3^{\circ}
$$
 and $1^{\circ} = \frac{\pi}{180}$ radians

The measure of a central angle θ is 1 radian, if the length of the arc *AB* is equal to the radius of the circle.

On a coordinate plane, an angle may be drawn by two rays that share a fixed endpoint at the origin. The beginning ray, called the **initial side** of the angle and the final position, is called the **terminal side** of the angle. An angle is in **standard position** if the vertex is located at the origin and the initial side lies along the positive *x*- axis. Counterclockwise rotations produce **positive angles** and clockwise rotations produce **negative angles**. When two angles have the same initial side and the same terminal side, they are called **coterminal angles**.

You can find an angle that is coterminal to a given angle by adding or subtracting integer multiples of 360° or 2π radians. In fact, the sine and cosine functions repeat their values every 360° or 2π radians, and tangent functions repeat their values every 180 $^{\circ}$ or π radians.

Periodic Properties of the Trigonometric Functions

$$
\sin(\theta \pm 360^\circ) = \sin \theta \qquad \cos(\theta \pm 360^\circ) = \cos \theta \qquad \tan(\theta \pm 180^\circ) = \tan \theta
$$

Example 1 □ Change the degree measure to radian measure and change the radian measure to degree measure.

a.
$$
45^{\circ}
$$
 b. $\frac{2\pi}{3}$ radians

Solution \Box a. $45^\circ = 45 \cdot \frac{\pi}{180}$ radians $= \frac{\pi}{4}$ radians σ = 45 $\frac{\pi}{\sqrt{2}}$ radians = $\frac{\pi}{\sqrt{2}}$ b. $\frac{2\pi}{3}$ radians $= \frac{2\pi}{3}$ radians $\left(\frac{180^\circ}{\pi \text{ radians}}\right) = 120$ \overline{D} \overline{D} \overline{D} \overline{D} \overline{D}

In the *xy*- plane above, *O* is the center of the circle, and the measure of $\angle POQ$ is $k\pi$ radians. What is the value of *k* ?

3 \overrightarrow{O} \overrightarrow{D} \overrightarrow{B} $\rightarrow x$ *y A*

In the *xy*- plane above, *O* is the center of the circle and the measure of $\angle AOD$ is $\frac{\pi}{3}$. If the radius of circle *O* is 6 what is the length of *AD* ?

D B

 A) 3 B) $3\sqrt{2}$ C) 4.5 D) $3\sqrt{3}$

4

2

Which of the following is equal to $\cos(\frac{\pi}{8})$?

A)
$$
cos(\frac{3\pi}{8})
$$

\nB) $cos(\frac{7\pi}{8})$
\nC) $sin(\frac{3\pi}{8})$
\nD) $sin(\frac{7\pi}{8})$

In the figure above, what is the value of cos*AOD* ?

y

 \overrightarrow{O} \overrightarrow{D} \overrightarrow{B} \overrightarrow{X}

A(3,4)

A)
$$
\frac{3}{5}
$$

B) $\frac{3}{4}$
C) $\frac{4}{5}$
D) $\frac{4}{3}$

Exercises - The Radian Measure of an Angle

15-3. Trigonometric Functions and the Unit Circle

Suppose $P(x, y)$ is a point on the circle $x^2 + y^2 = r^2$ and θ is an angle in standard position with terminal side *OP* , as shown at the right. We define sine of θ and cosine of θ as

$$
\sin \theta = \frac{y}{r} \qquad \qquad \cos \theta = \frac{x}{r}.
$$

The circle $x^2 + y^2 = 1$ is called the **unit circle**. This circle is the easiest one to work with because $\sin \theta$ and $\cos \theta$ are simply the *y*- coordinates and the *x*- coordinates of the points where the terminal side of θ intersects the circle.

$$
\sin \theta = \frac{y}{r} = \frac{y}{1} = y
$$
 $\cos \theta = \frac{x}{r} = \frac{x}{1} = x$.

Angles in standard position whose measures are multiples of 30° ($\frac{\pi}{6}$ radians $\frac{\pi}{\epsilon}$ radians) or multiples

of 45° ($\frac{\pi}{4}$ radians) are called **familiar angles**. To obtain the trigonometric values of sine, cosine, and tangent of the familiar angles, use 30° -60 $^\circ$ -90 $^\circ$ triangle ratio or the 45 $^\circ$ -45 $^\circ$ -90 $^\circ$ triangle ratio.

The **reference angle** associated with θ is the acute angle formed by the *x*- axis and the terminal side of the angle θ . A reference angle can be used to evaluate trigonometric functions for angles greater than 90 $^{\circ}$.

Familiar Angles in a Coordinate Plane

Angles with a reference angle of 30° (= $\frac{\pi}{6}$) are 150° (= $\frac{5\pi}{6}$), 210° (= $\frac{7\pi}{6}$), and 330° (= $\frac{11\pi}{6}$).

Use the 30° - 60° - 90° triangle ratio to find the trigonometric values of these angles and put the appropriate signs. On the unit circle, $\sin \theta = y$ is positive in quadrant I and II and $\cos \theta = x$ is positive in quadrant I and IV.

Angles with a reference angle of $60^\circ = \frac{\pi}{3}$ are $120^\circ = \frac{2\pi}{3}$, $240^\circ = \frac{4\pi}{3}$, and $300^\circ = \frac{5\pi}{3}$.

Use the 30° - 60° - 90° triangle ratio to find the trigonometric values of these angles and put the appropriate signs. On the unit circle, $\sin \theta = y$ is positive in quadrant I and II and $\cos \theta = x$ is positive in quadrant I and IV.

Angles with a reference angle of
$$
45^\circ = \frac{\pi}{4}
$$
 are $135^\circ = \frac{3\pi}{4}$, $225^\circ = \frac{5\pi}{4}$, and $315^\circ = \frac{7\pi}{4}$

Use the 45° -45 $^{\circ}$ -90 $^{\circ}$ triangle ratio to find the trigonometric values of these angles and put the appropriate signs. On the unit circle, $\sin \theta = y$ is positive in quadrant I and II and $\cos \theta = x$ is positive in quadrant I and IV.

For the angles 0° , $90^\circ = \frac{\pi}{2}$ $\int_{0}^{\infty} = \frac{\pi}{2}$, 180° = π , and 270° = $\frac{3\pi}{2}$, sin θ is equal to the *y* value of the point $P(x, y)$ and $\cos \theta$ is equal to the *x* value of the point $P(x, y)$. The points $P(1,0)$, $P(0,1)$, $P(-1,0)$, and $P(0,-1)$ on the unit circle corresponds to $\theta = 0^\circ = 0$, $\theta = 90^\circ = \frac{\pi}{2}$, $\theta = 180^\circ = \pi$, and $\theta = 270^\circ = \frac{3\pi}{2}$ respectively.

Exercises - The Trigonometric Functions and the Unit Circle

Chapter 15 Practice Test

Questions 1 and 2 refer to the following information.

In the *xy*- plane above, *O* is the center of the circle, and the measure of $\angle POQ$ is $k\pi$ radians.

What is the value of *k* ?

A) $\frac{1}{3}$ B) $\frac{1}{2}$ \mathcal{C}) $rac{2}{3}$

D) $\frac{3}{4}$

4

What is $cos(k+1)\pi$?

In triangle *ABC* above, $\overline{AC} \perp \overline{BD}$. Which of the following does not represent the area of triangle *ABC* ?

A) $\frac{1}{2} (AB \cos \angle A + BC \cos \angle C) (AB \cos \angle ABD)$ B) $\frac{1}{2} (AB \cos \angle A + BC \cos \angle C)(BC \sin \angle C)$ C) $\frac{1}{2} (AB \sin \angle ABD + BC \sin \angle CBD) (AB \sin \angle A)$ D) $\frac{1}{2} (AB \sin \angle ABD + BC \sin \angle CBD) (BC \cos \angle C)$

In the isosceles triangle above, what is the value of $\sin x$ °?

7

In triangle ABC , the measure of $\angle C$ is 90°, $AC = 24$, and $BC = 10$. What is the value of sin *A* ?

In the right triangle *ABC* above, the cosine of x° is $\frac{3}{5}$. If *BC* = 12, what is the length of *AC* ?

9

If $sin(5x-10)$ [°] = $cos(3x+16)$ [°], what is the value of *x* ?

Answer Key

j

Answers and Explanations

Section 15-1

1. B

Draw a perpendicular segment from *B* to the opposite side *AC* . Let the perpendicular segment intersect side *AC* at *D* . Because the triangle is isosceles, a perpendicular segment from the vertex to the opposite side bisects the base and creates two congruent right triangles.

Therefore,
$$
AD = \frac{1}{2}AC = \frac{1}{2}(12) = 6
$$
.
\nIn right $\triangle ABD$,
\n $\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{AD}{AB} = \frac{6}{10} = 0.6$.

2. C

$$
AB2 = BD2 + AD2
$$
 Pythagorean Theorem
10² = BD² + 6²
100 = BD² + 36
64 = BD²
8 = BD
sin θ = $\frac{\text{opposite}}{\text{hypotenuse}} = \frac{BD}{AB} = \frac{8}{10} = 0.8$

$$
3. \, \text{B}
$$

 $\tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{BD}{AD} = \frac{8}{6} = \frac{4}{3}$ *BD AD* $\theta = \frac{opposite}{\sqrt{D}} = \frac{DE}{\sqrt{D}} = \frac{0}{2}$

4 . D

If *x* and *y* are acute angles and $\cos x$ [°] = $\sin y$ [°], $x + y = 90$ by the complementary angle theorem.

 $(3a-14)+(50-a) = 90$ $x = 3a-14$, $y = 50-a$ $2a + 36 = 90$ Simplify. $2a = 54$ $a = 27$

5. C

I.
$$
\sin A = \frac{\text{opposite of } \angle A}{\text{hypotenuse}} = \frac{a}{c}
$$

Roman numeral I is true.

II.
$$
\cos B = \frac{\text{adjacent of } \angle B}{\text{hypotenuse}} = \frac{a}{c}
$$

Roman numeral II is true.

III.
$$
\tan A = \frac{\text{opposite of } \angle A}{\text{adjacent of } \angle A} = \frac{a}{b}
$$

Roman numeral III is false.

Section 15-2

1. B

The graph shows $P(x, y) = P(1,1)$. Thus, $x = 1$ and $y = 1$. Use the distance formula to find the length of radius *OA* .

$$
OA = \sqrt{x^2 + y^2} = \sqrt{1^2 + 1^2} = \sqrt{2}
$$

sin $\theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{1}{\sqrt{2}}$ or sin $\theta = \frac{\sqrt{2}}{2}$

Therefore, the measure of $\angle POQ$ is 45°, which is equal to $45(\frac{\pi}{180}) = \frac{\pi}{4}$ radians. Thus, $k = \frac{1}{4}$.

2. C

Use the complementary angle theorem. $cos(\theta) = sin(90^\circ - \theta)$, or $cos(\theta) = sin(\frac{\pi}{2} - \theta)$ Therefore, $\cos(\frac{\pi}{8}) = \sin(\frac{\pi}{2} - \frac{\pi}{8}) = \sin(\frac{3\pi}{8})$. All the other answer choices have values different from $\cos(\frac{\pi}{8})$.

3. D

In
$$
\triangle OAD
$$
, $\sin \frac{\pi}{3} = \sin 60^\circ = \frac{AD}{OA} = \frac{AD}{6}$.
\nSince $\sin 60^\circ = \frac{\sqrt{3}}{2}$, you get $\frac{AD}{6} = \frac{\sqrt{3}}{2}$.
\nTherefore, $2AD = 6\sqrt{3}$ and $AD = 3\sqrt{3}$.

4. A

Use the distance formula to find the length of *OA* . $OA = \sqrt{x^2 + y^2} = \sqrt{3^2 + 4^2} = \sqrt{25} = 5$

$$
\cos \angle AOD = \frac{OD}{OA} = \frac{3}{5}
$$

Section 15-3

1. A

Draw segment *PR*, which is perpendicular to the *x*- axis. In right triangle *POR*, $x = -1$

and $y = \sqrt{3}$. To find the length of *OP*, use the Pythagorean theorem.

 $OP² = PR² + OR² = (\sqrt{3})² + (-1)² = 4$ Which gives $OP = 2$.

2. C

Since the terminal side of $(a+180)^\circ$ is *OT*, the value of $cos(a+180)^\circ$ is equal to $\frac{OS}{OT}$. 1 2 $\frac{OS}{OT}$ =

3. B

Draw segment *PR*, which is perpendicular to the *x*- axis. In right triangle *POR*, $x = -\sqrt{3}$ and *y* = −1 . To find the length of *OP*, use the Pythagorean theorem. $OP^{2} = PR^{2} + OR^{2} = (-1)^{2} + (\sqrt{3})^{2} = 4$ Which gives $OP = 2$. Since $\sin \angle POR = \frac{y}{OP} = \frac{-1}{2}$, the measure of $\angle POR$ is equal to 30°, or $\frac{\pi}{6}$ radian. 7 $k\pi = \pi + \frac{\pi}{6} = \frac{7}{6}\pi$ Therefore, $k = \frac{7}{5}$ $k = \frac{7}{6}$

4. D

$$
\tan(k\pi) = \tan(\frac{7}{6}\pi) = \frac{y}{x} = \frac{-1}{\sqrt{3}} = \frac{1}{\sqrt{3}}
$$

Chapter 15 practice Test

1. D

j

Note: Figure not drawn to scale.

In
$$
\triangle ABC
$$
, $\tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{BC}{AC}$.
\nIf $\tan \theta = \frac{3}{4}$, then $BC = 3$ and $AC = 4$.
\nBy the Pythagorean theorem,
\n $AB^2 = AC^2 + BC^2 = 4^2 + 3^2 = 25$, thus
\n $AB = \sqrt{25} = 5$.
\n $\sin \theta = \frac{BC}{AB} = \frac{3}{5}$

2. C

3. C

Draw segment *PR*, which is perpendicular to the *x*- axis. In right triangle *POR*, $x = -\frac{1}{2}$ and $y = \frac{\sqrt{3}}{2}$. To find the length of *OP*, use the Pythagorean theorem. $OP^2 = PR^2 + OR^2 = (\frac{\sqrt{3}}{2})^2 + (\frac{-1}{2})^2 = \frac{3}{4} + \frac{1}{4} = 1$ Which gives *OP* = 1 . Thus, triangle *OPR* is 30° -60 $^\circ$ -90 $^\circ$ triangle and the measure of $\angle POR$ is 60°, which is $\frac{\pi}{3}$ radian. Therefore, the measure of $\angle POQ$ is $\pi - \frac{\pi}{3}$ $\pi - \frac{\pi}{2}$, or $\frac{2}{\pi}$ $\frac{2\pi}{3}$ radian. If $\angle POQ$ is $k\pi$ radians then *k* is equal to $\frac{2}{3}$.

4. B

Since the terminal side of $(k+1)\pi$ is OT, the value of $\cos(k+1)\pi$ is equal to $\frac{OS}{OT}$. 1 2 $\frac{OS}{OT}$ =

5. D

$$
= \frac{1}{2}(AD + CD)(BD) = \frac{1}{2}(AC)(BD)
$$

\nB)
$$
\frac{1}{2}(AB \cos \angle A + BC \cos \angle C)(BC \sin \angle C)
$$

$$
= \frac{1}{2}(AB \cdot \frac{AD}{AB} + BC \cdot \frac{CD}{BC})(BC \cdot \frac{BD}{BC})
$$

$$
2 \qquad AB \qquad BC \qquad BC
$$

$$
= \frac{1}{2}(AD + CD)(BD) = \frac{1}{2}(AC)(BD)
$$

C)
$$
\frac{1}{2}(AB \sin \angle ABD + BC \sin \angle CBD)(AB \sin \angle A)
$$

$$
= \frac{1}{2}(AB \cdot \frac{AD}{AB} + BC \cdot \frac{CD}{BC})(AB \cdot \frac{BD}{AB})
$$

$$
= \frac{1}{2}(AD + CD)(BD) = \frac{1}{2}(AC)(BD)
$$

D)
$$
\frac{1}{2}(AB \sin \angle ABD + BC \sin \angle CBD)(BC \cos \angle C)
$$

$$
= \frac{1}{2}(AB \cdot \frac{AD}{AB} + BC \frac{CD}{BC})(BC \cdot \frac{CD}{BC})
$$

= $\frac{1}{2}(AD + CD)(CD) = \frac{1}{2}(AC)(CD)$
Which does not represent the area of

triangle *ABC*.

Choice D is correct.

6. D

Draw segment *BD*, which is perpendicular to side *AC*. Because the triangle is isosceles, a perpendicular segment from the vertex to the opposite side bisects the base and creates two congruent right triangles.

Therefore,
$$
AD = \frac{1}{2}AC = \frac{1}{2}(24) = 12
$$
.
By the Pythagorean theorem, $AB^2 = BD^2 + AD^2$
Thus, $20^2 = BD^2 + 12^2$.
 $BD^2 = 20^2 - 12^2 = 256$
 $BD = \sqrt{256} = 16$
In right $\triangle ABD$,
 $\sin x^\circ = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{BD}{AB} = \frac{16}{20} = \frac{4}{5}$.

$$
7. \ \ \frac{5}{13}
$$

Sketch triangle *ABC* .

$$
AB2 = BC2 + AC2
$$

\n
$$
AB2 = 102 + 242 = 676
$$

\n
$$
AB = \sqrt{676} = 26
$$

\n
$$
\sin A = \frac{10}{26} = \frac{5}{13}
$$

\n8. 9

$$
c \overbrace{\qquad \qquad }^{x^2} A
$$

$$
\cos x^{\circ} = \frac{AC}{AB} = \frac{3}{5}
$$

Let $AC = 3x$ and $AB = 5x$.
 $AB^2 = BC^2 + AC^2$ Pythagorean Theorem
 $(5x)^2 = 12^2 + (3x)^2$ $BC = 12$
 $25x^2 = 144 + 9x^2$
 $16x^2 = 144$
 $x^2 = 9$
 $x = \sqrt{9} = 3$

Therefore, $AC = 3x = 3(3) = 9$

9. 10.5

According to the complementary angle theorem, $\sin \theta = \cos(90 - \theta)$.

If
$$
sin(5x-10)^{\circ} = cos(3x+16)^{\circ}
$$
,
\n $3x+16 = 90 - (5x-10)$.
\n $3x+16 = 90-5x+10$
\n $3x+16 = 100-5x$
\n $8x = 84$
\n $x = 10.5$