Answer Key

Section 15-1

1. B

2. C

3. B

4. D

5. C

5. D

Section 15-2

1. B

2. C

3. D

4. A

Section 15-3

1. A

2. C

3. B

4. D

Chapter 15 Practice Test

1. D

2. C

3.C

4. B

6. D

 $\frac{5}{13}$

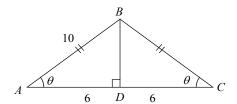
8.9

9. 10.5

Answers and Explanations

Section 15-1

1. B



Draw a perpendicular segment from B to the opposite side AC. Let the perpendicular segment intersect side AC at D. Because the triangle is isosceles, a perpendicular segment from the vertex to the opposite side bisects the base and creates two congruent right triangles.

Therefore,
$$AD = \frac{1}{2}AC = \frac{1}{2}(12) = 6$$
.

In right $\triangle ABD$,

$$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{AD}{AB} = \frac{6}{10} = 0.6$$
.

2. C

$$AB^2 = BD^2 + AD^2$$
 Pythagorean Theorem
 $10^2 = BD^2 + 6^2$
 $100 = BD^2 + 36$
 $64 = BD^2$
 $8 = BD$
 $\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{BD}{AB} = \frac{8}{10} = 0.8$

3. B

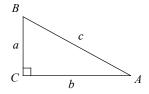
$$\tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{BD}{AD} = \frac{8}{6} = \frac{4}{3}$$

4. D

If x and y are acute angles and $\cos x^{\circ} = \sin y^{\circ}$, x + y = 90 by the complementary angle theorem.

$$(3a-14)+(50-a) = 90$$
 $x = 3a-14$, $y = 50-a$
 $2a+36 = 90$ Simplify.
 $2a = 54$
 $a = 27$

5. C



I.
$$\sin A = \frac{\text{opposite of } \angle A}{\text{hypotenuse}} = \frac{a}{c}$$

Roman numeral I is true.

II.
$$\cos B = \frac{\text{adjacent of } \angle B}{\text{hypotenuse}} = \frac{a}{c}$$

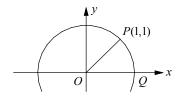
Roman numeral II is true.

III.
$$\tan A = \frac{\text{opposite of } \angle A}{\text{adjacent of } \angle A} = \frac{a}{b}$$

Roman numeral III is false.

Section 15-2

1. B



The graph shows P(x, y) = P(1, 1). Thus, x = 1 and y = 1. Use the distance formula to find the length of radius OA.

$$OA = \sqrt{x^2 + y^2} = \sqrt{1^2 + 1^2} = \sqrt{2}$$

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{1}{\sqrt{2}} \text{ or } \sin \theta = \frac{\sqrt{2}}{2}$$

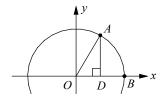
262 Chapter 15

Therefore, the measure of $\angle POQ$ is 45° , which is equal to $45(\frac{\pi}{180}) = \frac{\pi}{4}$ radians. Thus, $k = \frac{1}{4}$.

2. C

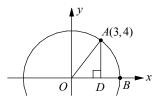
Use the complementary angle theorem. $\cos(\theta) = \sin(90^\circ - \theta) \text{ , or } \cos(\theta) = \sin(\frac{\pi}{2} - \theta)$ Therefore, $\cos(\frac{\pi}{8}) = \sin(\frac{\pi}{2} - \frac{\pi}{8}) = \sin(\frac{3\pi}{8}) \text{ .}$ All the other answer choices have values different from $\cos(\frac{\pi}{8}) \text{ .}$

3. D



In $\triangle OAD$, $\sin \frac{\pi}{3} = \sin 60^\circ = \frac{AD}{OA} = \frac{AD}{6}$. Since $\sin 60^\circ = \frac{\sqrt{3}}{2}$, you get $\frac{AD}{6} = \frac{\sqrt{3}}{2}$. Therefore, $2AD = 6\sqrt{3}$ and $AD = 3\sqrt{3}$.

4. A



Use the distance formula to find the length of OA. $OA = \sqrt{x^2 + y^2} = \sqrt{3^2 + 4^2} = \sqrt{25} = 5$ $\cos \angle AOD = \frac{OD}{OA} = \frac{3}{5}$

Section 15-3

1. A

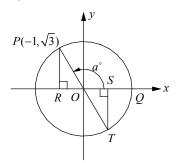
Draw segment PR, which is perpendicular to the x-axis. In right triangle POR, x = -1

and $y = \sqrt{3}$. To find the length of OP, use the Pythagorean theorem.

$$OP^2 = PR^2 + OR^2 = (\sqrt{3})^2 + (-1)^2 = 4$$

Which gives $OP = 2$.

$$\cos a^{\circ} = \frac{x}{OP} = \frac{-1}{2}$$

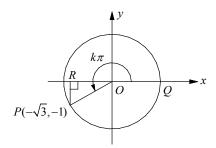


2. C

Since the terminal side of $(a+180)^{\circ}$ is OT, the value of $\cos(a+180)^{\circ}$ is equal to $\frac{OS}{OT}$.

$$\frac{OS}{OT} = \frac{1}{2}$$

3. B



Draw segment PR, which is perpendicular to the x-axis. In right triangle POR, $x = -\sqrt{3}$ and y = -1. To find the length of OP, use the Pythagorean theorem.

$$OP^2 = PR^2 + OR^2 = (-1)^2 + (\sqrt{3})^2 = 4$$

Which gives OP = 2.

Since $\sin \angle POR = \frac{y}{OP} = \frac{-1}{2}$, the measure of

 $\angle POR$ is equal to 30°, or $\frac{\pi}{6}$ radian.

$$k\pi = \pi + \frac{\pi}{6} = \frac{7}{6}\pi$$

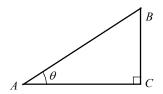
Therefore, $k = \frac{7}{6}$

4. D

$$\tan(k\pi) = \tan(\frac{7}{6}\pi) = \frac{y}{x} = \frac{-1}{-\sqrt{3}} = \frac{1}{\sqrt{3}}$$

Chapter 15 practice Test

1. D



Note: Figure not drawn to scale.

In
$$\triangle ABC$$
, $\tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{BC}{AC}$

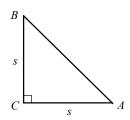
If
$$\tan \theta = \frac{3}{4}$$
, then $BC = 3$ and $AC = 4$.

By the Pythagorean theorem,

$$AB^2 = AC^2 + BC^2 = 4^2 + 3^2 = 25$$
, thus $AB = \sqrt{25} = 5$.

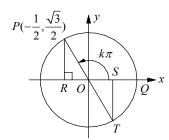
$$\sin\theta = \frac{BC}{AB} = \frac{3}{5}$$

2. C



$$\tan \angle A = \frac{\text{opposite side of } \angle A}{\text{adjacent side of } \angle A} = \frac{s}{s} = 1$$
$$= \frac{s}{s} = 1$$

3. C



Draw segment PR, which is perpendicular to the x-axis. In right triangle POR, $x = -\frac{1}{2}$ and $y = \frac{\sqrt{3}}{2}$ To find the length of QP use the

and $y = \frac{\sqrt{3}}{2}$. To find the length of *OP*, use the Pythagorean theorem.

$$OP^2 = PR^2 + OR^2 = (\frac{\sqrt{3}}{2})^2 + (\frac{-1}{2})^2 = \frac{3}{4} + \frac{1}{4} = 1$$

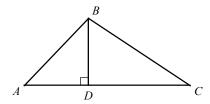
Which gives $OP = 1$. Thus, triangle OPR is 30° - 60° - 90° triangle and the measure of $\angle POR$ is 60° , which is $\frac{\pi}{3}$ radian. Therefore, the measure of $\angle POQ$ is $\pi - \frac{\pi}{3}$, or $\frac{2\pi}{3}$ radian. If $\angle POQ$ is $k\pi$ radians then k is equal to $\frac{2}{3}$.

4. B

Since the terminal side of $(k+1)\pi$ is OT, the value of $\cos(k+1)\pi$ is equal to $\frac{OS}{OT}$.

$$\frac{OS}{OT} = \frac{1}{2}$$

5. D



Area of triangle $ABC = \frac{1}{2}(AC)(BD)$

Check each answer choice.

A)
$$\frac{1}{2}(AB\cos\angle A + BC\cos\angle C)(AB\cos\angle ABD)$$
$$= \frac{1}{2}(AB \cdot \frac{AD}{AB} + BC \cdot \frac{CD}{BC})(AB \cdot \frac{BD}{AB})$$
$$= \frac{1}{2}(AD + CD)(BD) = \frac{1}{2}(AC)(BD)$$

B)
$$\frac{1}{2}(AB\cos\angle A + BC\cos\angle C)(BC\sin\angle C)$$
$$= \frac{1}{2}(AB\cdot\frac{AD}{AB} + BC\cdot\frac{CD}{BC})(BC\cdot\frac{BD}{BC})$$
$$= \frac{1}{2}(AD + CD)(BD) = \frac{1}{2}(AC)(BD)$$

264 Chapter 15

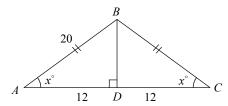
C)
$$\frac{1}{2}(AB\sin\angle ABD + BC\sin\angle CBD)(AB\sin\angle A)$$
$$= \frac{1}{2}(AB \cdot \frac{AD}{AB} + BC \cdot \frac{CD}{BC})(AB \cdot \frac{BD}{AB})$$
$$= \frac{1}{2}(AD + CD)(BD) = \frac{1}{2}(AC)(BD)$$

D)
$$\frac{1}{2}(AB\sin\angle ABD + BC\sin\angle CBD)(BC\cos\angle C)$$
$$= \frac{1}{2}(AB \cdot \frac{AD}{AB} + BC\frac{CD}{BC})(BC \cdot \frac{CD}{BC})$$
$$= \frac{1}{2}(AD + CD)(CD) = \frac{1}{2}(AC)(CD)$$

Which does not represent the area of triangle *ABC*.

Choice D is correct.

6. D



Draw segment BD, which is perpendicular to side AC. Because the triangle is isosceles, a perpendicular segment from the vertex to the opposite side bisects the base and creates two congruent right triangles.

Therefore,
$$AD = \frac{1}{2}AC = \frac{1}{2}(24) = 12$$
.

By the Pythagorean theorem, $AB^2 = BD^2 + AD^2$ Thus, $20^2 = BD^2 + 12^2$.

$$BD^2 = 20^2 - 12^2 = 256$$

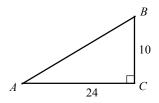
$$BD = \sqrt{256} = 16$$

In right $\triangle ABD$,

$$\sin x^{\circ} = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{BD}{AB} = \frac{16}{20} = \frac{4}{5}$$
.

7. $\frac{5}{13}$

Sketch triangle ABC.



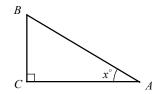
$$AB^{2} = BC^{2} + AC^{2}$$

$$AB^{2} = 10^{2} + 24^{2} = 676$$

$$AB = \sqrt{676} = 26$$

$$\sin A = \frac{10}{26} = \frac{5}{13}$$

8. 9



$$\cos x^{\circ} = \frac{AC}{AB} = \frac{3}{5}$$

Let AC = 3x and AB = 5x.

$$AB^2 = BC^2 + AC^2$$

Pythagorean Theorem

BC = 12

$$(5x)^2 = 12^2 + (3x)^2$$

$$25x^2 = 144 + 9x^2$$

$$16x^2 = 144$$

$$x^2 = 9$$

$$x = \sqrt{9} = 3$$

Therefore, AC = 3x = 3(3) = 9

9. 10.5

According to the complementary angle theorem, $\sin \theta = \cos(90 - \theta)$.

If $\sin(5x-10)^{\circ} = \cos(3x+16)^{\circ}$,

$$3x+16=90-(5x-10)$$
.

$$3x + 16 = 90 - 5x + 10$$

$$3x + 16 = 100 - 5x$$

$$8x = 84$$

$$x = 10.5$$