Aı	nswer I	Key				2. A
Se	ction 1	1-1				Change the given equation into the factored for (-1) is a bid and (-1)
1.	D	2. A	3. $\frac{9}{16}$	4.2	5. $\frac{4}{3}$	y = (x-a)(x-b), in which $x = a$ and $x = b$ at the x-intercepts of the parabola. Find two numb with a sum of -6 and a product of 5. The two numbers are -1 and -5.
Se	ction 1	1-2				$y = x^2 - 6x + 5$ can be written in the factored for
1. 6.		2. B	3. A	4. A	5. C	y = (x - 1)(x - 5). The x-intercepts are 1 and 5.
Se	ection 1	1-3				3. $\frac{9}{16}$
1. 6.		2. D	3. B	4. D	5. C	$y = a(x-h)^2$
Se	ection 1	1-4				$0 = a(4-h)^2$ x- intercept at (4,0)
1. 6	$\frac{9}{16}$	2. A	3. C	4. D	5.11	Since $a \neq 0$, $4-h=0$, or $h=4$. The graph of the parabola passes through $(0,9)$, since the <i>y</i> -intercept of the parabola is 9.
	16					$9 = a(0-h)^2$ y-intercept at (0,9)
Se	ction 1	1-5				$9 = ah^2$ Simplify.
1.	С	2. A	3. D	4. D	5. B	$9 = a(4)^2$ Substitute 4 for h .
6.	С					
Se	ection 1	1-6			$\frac{9}{16} = a$	
1.	С	2. B	3. C	4. D		4. 2
						$y = a(x+2)^2 - 15$
Cł	napter 1	1 Practice	Test		$3 = a(1+2)^2 - 15$ $x = 1$ and $y = 3$	
1.	В	2. C	3. A	4. A	5. D	3 = 9a - 15
6.	С	7. A	8. B	9. B		18 = 9a
						2 = a

Answers and Explanations

Section 11-1

1. D

Change the given equation into the vertex form $y = a(x-h)^2 + k$, in which (h,k) is the vertex of the parabola, by completing the square. $y = x^2 - 6x + 5$

$$= x^{2} - 6x + (\frac{-6}{2})^{2} - (\frac{-6}{2})^{2} + 5$$
$$= (x^{2} - 6x + 9) - 9 + 5$$
$$= (x - 3)^{2} - 4$$

The coordinate of the vertex can be read as (3, -4).

rm are nbers form 5.)),

5. $\frac{4}{3}$

The *x*-intercepts of the graph of the equation y = a(x-1)(x+5) are -5 and 1. The x-coordinate of the vertex is the average of the two x-intercepts. Therefore, $h = \frac{-5+1}{2} = -2$. The value of k is -12 because the minimum value of y is -12. So the coordinate of the vertex is (-2, -12). Substitute x = -2 and y = -12 in the given equation. -12 = a(-2-1)(-2+5)-12 = -9a $\frac{12}{9} = a$ or $a = \frac{4}{3}$

Section 11-2

1. C

 $x^2 - 2x - 24$

Find two numbers with a sum of -2 and a product of -24. The two numbers are -6 and 4. Therefore, $x^2 - 2x - 24 = (x-6)(x+4)$.

2. B

 $x^2 - 17x + 72$

Find two numbers with a sum of -17 and a product of 72. The two numbers are -8 and -9. Therefore, $x^2 - 17x + 72 = (x - 8)(x - 9)$.

3. A

 $-x^2 + 5x + 84 = -(x^2 - 5x - 84)$

Find two numbers with a sum of -5 and a product of -84. The two numbers are -12 and 7. $-x^2 + 5x + 84 = -(x^2 - 5x - 84)$

$$= -(x-12)(x+7) = (12-x)(x+7)$$

4. A

 $3x^2 + 7x - 6$

Find two numbers with a sum of 7 and a product of $3 \cdot -6$ or -18. The two numbers are -2 and 9.

$$3x^{2} + 7x - 6$$

= $3x^{2} - 2x + 9x - 6$ Write $7x$ as $-2x + 9x$.
= $(3x^{2} - 2x) + (9x - 6)$ Group terms.
= $x(3x - 2) + 3(3x - 2)$ Factor out the GCF.
= $(3x - 2)(x + 3)$ Distributive Property

5. C

$$2x^2 + x - 15$$

Find two numbers with a sum of 1 and a product of $2 \cdot -15$ or -30. The two numbers are -5 and 6.

$$2x^{2} + x - 15$$

= 2x² - 5x + 6x - 15 Write x as -5x + 6x.
= (2x² - 5x) + (6x - 15) Group terms.
= x(2x - 5) + 3(2x - 5) Factor out the GCF.
= (2x - 5)(x + 3) Distributive Property

6. D

 $-6x^2 + x + 2 = -(6x^2 - x - 2)$

Find two numbers with a sum of -1 and a product of $6 \cdot -2$ or -12. The two numbers are -4 and 3.

$$-6x^{2} + x + 2$$

= -(6x² - x - 2)
= -(6x² - 4x + 3x - 2) Write -x as -4x + 3x.
= -[(6x² - 4x) + (3x - 2)] Group terms.
= -[2x(3x - 2) + (3x - 2)] Factor out the GCF.
= -(3x - 2)(2x + 1) Distributive Property

Section 11-3

1. A

$$3x^{2} - 48$$

= 3(x² - 16) Factor out the GCF.
= 3((x)² - (4)²) Write in the form a² - b².
= 3(x - 4)(x + 4) Difference of Squares

2. D

$$x-6\sqrt{x}-16$$

Let $y = \sqrt{x}$, then $y^2 = x$.
$$x-6\sqrt{x}-16$$
$$= y^2 - 6y - 16$$
$$y = \sqrt{x} \text{ and } y^2 = x$$
$$= (y-8)(y+2)$$
$$= (\sqrt{x}-8)(\sqrt{x}+2)$$
$$y = \sqrt{x} \text{ and } y^2 = x$$

3. B

$$(x-y)^{2}$$

= $(x-y)(x-y)$
= $x^{2} - 2xy + y^{2}$
= $(x^{2} + y^{2}) - 2xy$
= $10 - 2(-3) = 16$ $x^{2} + y^{2} = 10$ and $xy = -3$

4. D

5. C

$6x^2 + 7x - 24 = 0$	
(3x+8)(2x-3) = 0	Factor.
3x + 8 = 0 or $2x - 3 = 0$	Zero Product Property
$x = -\frac{8}{3}$ or $x = \frac{3}{2}$	Solve each equation.
Since $\frac{3}{2} > -\frac{8}{3}$, $r = \frac{3}{2}$ and s	$s=-\frac{8}{3}.$
$r-s = \frac{3}{2} - \left(-\frac{8}{3}\right) = \frac{9}{6} + \frac{16}{6} =$	$\frac{25}{6}$

6. B

$x^2 - 3x = 28$	
$x^2 - 3x - 28 = 0$	Make one side 0.
(x-7)(x+4) = 0	Factor.
x - 7 = 0 or $x + 4 = 0$	Zero Product Property
x = 7 or $x = -4$	Solve each equation.

Therefore, r + s = 7 + (-4) = 3.

Section 11-4

1. D

$$x^{2} - 10x = 75$$

Add $(\frac{-10}{2})^{2}$ to each side.
$$x^{2} - 10x + (-\frac{10}{2})^{2} = 75 + (-\frac{10}{2})^{2}$$

$$x^{2} - 10x + 25 = 75 + 25$$
 Simplify.
 $(x-5)^{2} = 100$ Factor $x^{2} - 10x + 25$.
 $x-5 = \pm 10$ Take the square root.
 $x = 5 \pm 10$ Add 5 to each side.
 $x = 5 \pm 10$ or $x = 5 - 10$ Separate the solutions.
 $x = 15$ or $x = -5$ Simplify.

If x < 0, x = -5. Therefore, x + 5 = -5 + 5 = 0.

2. A

$$x^{2} - kx = 20$$

Add $(\frac{-k}{2})^{2}$ to each side.
$$x^{2} - kx + (\frac{-k}{2})^{2} = 20 + (\frac{-k}{2})^{2}$$

$$x^{2} - kx + \frac{k^{2}}{4} = 20 + \frac{k^{2}}{4}$$
 Simplify.
$$(x - \frac{k}{2})^{2} = 20 + \frac{k^{2}}{4}$$
 Factor $x^{2} - kx + \frac{k^{2}}{4}$.

$$(6)^{2} = 20 + \frac{k^{2}}{4}$$
Substitute 6 for $x - \frac{k}{2}$.

$$16 = \frac{k^{2}}{4}$$
Solving for k gives $k = \pm 8$.
Solving the given equation $x - \frac{k}{2} = 6$ for x
gives $x = 6 + \frac{k}{2}$.
If $k = 8$, $x = 6 + \frac{k}{2} = 6 + \frac{8}{2} = 10$.
If $k = -8$, $x = 6 + \frac{k}{2} = 6 + \frac{-8}{2} = 2$.
Of the answer choices, 2 is a possible value
of x. Therefore, Choice A is correct.

3. C

$$x^2 - \frac{k}{3}x = 5$$

The equation could be solved by completing the square by adding $(\frac{1}{2} \cdot \frac{k}{3})^2$, or $\frac{k^2}{36}^2$, to each side. Choice C is correct.

4. D

$$x^{2} - rx = \frac{k^{2}}{4}$$
Add $(\frac{-r}{2})^{2}$, or $\frac{r^{2}}{4}$, to each side.

$$x^{2} - rx + \frac{r^{2}}{4} = \frac{k^{2}}{4} + \frac{r^{2}}{4}$$

$$(x - \frac{r}{2})^{2} = \frac{k^{2} + r^{2}}{4}$$
Factor $x^{2} - rx + \frac{r^{2}}{4}$.

$$x - \frac{r}{2} = \pm \sqrt{\frac{k^{2} + r^{2}}{4}}$$
Take the square root.

$$x - \frac{r}{2} = \pm \frac{\sqrt{k^{2} + r^{2}}}{2}$$
Simplify.

$$x = \frac{r}{2} \pm \frac{\sqrt{k^{2} + r^{2}}}{2}$$
Add $\frac{r}{2}$ to each side.

Choice D is correct.

5. 11

$$(x-7)(x-s) = x^{2} - rx + 14$$
$$x^{2} - (s+7)x + 7s = x^{2} - rx + 14$$

Since the *x*-terms and constant terms have to be equal on both sides of the equation,

r = s + 7 and 7s = 14. Solving for *s* gives s = 2. r = s + 7 = 2 + 7 = 9Therefore, r + s = 9 + 2 = 11.

6.
$$\frac{3}{16}$$

 $x^2 - \frac{3}{2}x + c = (x - k)^2 \implies$
 $x^2 - \frac{3}{2}x + c = x^2 - 2kx + k^2$

Since the *x*-terms and constant terms have to be equal on both sides of the equation,

 $2k = \frac{3}{2}$ and $c = k^2$. Solving for k gives $k = \frac{3}{4}$. Therefore, $c = k^2 = (\frac{3}{4})^2 = \frac{9}{16}$.

Section 11-5

9

1. C

$$(p-1)x^2 - 2x - (p+1) = 0$$

Use the quadratic formula to find the solutions for x.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

= $\frac{-(-2) \pm \sqrt{(-2)^2 - 4(p-1)(-(p+1))}}{2(p-1)}$
= $\frac{2 \pm \sqrt{4 + 4(p-1)(p+1)}}{2(p-1)}$
= $\frac{2 \pm \sqrt{4 + 4p^2 - 4}}{2(p-1)}$
= $\frac{2 \pm \sqrt{4p^2}}{2(p-1)} = \frac{2 \pm 2p}{2(p-1)}$
= $\frac{2(1 \pm p)}{2(p-1)} = \frac{1 \pm p}{p-1}$
The solutions are $\frac{1+p}{p-1}$ and $\frac{1-p}{p-1}$, or -1 .

Choice C is correct.

2. A

Let r_1 and r_2 be the solutions of the quadratic

equation $3x^2 + 12x - 29 = 0$. Use the sum of roots formula. $r_1 + r_2 = -\frac{b}{a} = -\frac{12}{3} = -4$.

3. D

$$kx^2 + 6x + 4 = 0$$

If the quadratic equation has exactly one solution, then $b^2 - 4ac = 0$.

$$b^2 - 4ac = 6^2 - 4(k)(4) = 0 \implies 36 - 16k = 0$$

 $\implies k = \frac{36}{16} = \frac{9}{4}$

4. D

y = bx - 3 and $y = ax^2 - 7x$ Substitute bx - 3 for y in the quadratic equation.

$$bx-3 = ax^2 - 7x$$

 $ax^2 + (-7-b)x + 3 = 0$ Make one side 0.

The system of equations will have exactly two real solutions if the discriminant of the quadratic equation is positive.

 $(-7-b)^2 - 4a(3) > 0$, or $(7+b)^2 - 12a > 0$. We need to check each answer choice to find out for which values of *a* and *b* the system of equations has exactly two real solutions.

- A) If a = 3 and b = -2, $(7-2)^2 12(3) < 0$.
- B) If a = 5 and b = 0, $(7+0)^2 12(5) < 0$.
- C) If a = 7 and b = 2, $(7+2)^2 12(7) < 0$.
- D) If a = 9 and b = 4, $(7+4)^2 12(9) > 0$.

Choice Dis correct.

$$x^{2} + 4 = -6x$$

$$x^{2} + 6x - 4 = 0$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-6 \pm \sqrt{6^{2} - 4(1)(4)}}{2(1)}$$

$$= \frac{-6 \pm \sqrt{20}}{2} = \frac{-6 \pm 2\sqrt{5}}{2}$$

$$= -3 \pm \sqrt{5}$$

6. C

If the quadratic equation has no real solution, the discriminant, $b^2 - 4ac$, must be negative. Check each answer choice.

A)
$$5x^2 - 10x = 6 \implies 5x^2 - 10x - 6 = 0$$

 $b^2 - 4ac = (-10)^2 - 4(5)(-6) > 0$
B) $4x^2 + 8x + 4 = 0$
 $b^2 - 4ac = (8)^2 - 4(4)(4) = 0$

C)
$$3x^2 - 5x = -3 \implies 3x^2 - 5x + 3 = 0$$

 $b^2 - 4ac = (-5)^2 - 4(3)(3) < 0$

Choice C is correct.

Section 11-6

1. C

Since the two x-intercepts are -4 and 2, the equation of the parabola can be written as y = a(x+4)(x-2). Substitute x = 0 and $y = \frac{16}{3}$ in the equation, since the graph of the parabola passes through $(0, \frac{16}{3})$.

$$\frac{16}{3} = a(0+4)(0-2)$$

Solving the equation for *a* gives $a = -\frac{2}{3}$.

Thus the equation of the parabola is

$$y = -\frac{2}{3}(x+4)(x-2)$$
.

The x-coordinate of the vertex is the average of the two x-intercepts: $\frac{-4+2}{2}$, or -1.

The y- coordinate of the vertex can be found by substituting -1 for x in the equation of the parabola: $y = -\frac{2}{3}(-1+4)(-1-2) = 6$.

The line passes through (2,0) and (-1,6).

The slope of the line is $\frac{6-0}{-1-2} = -2$. The equation of the line in point-slope form is y - 0 = -2(x-2). To find the *y*- intercept of the line, substitute 0 for *x*. y = -2(0-2) = 4

Choice C is correct.

2. B

 $y = x^{2} + x$ and y = ax - 1Substitute ax - 1 for y in the quadratic equation. $ax - 1 = x^{2} + x$

$$ax - 1 = x + x$$

 $x^{2} + (-a+1)x + 1 = 0$ Make one side 0

If the system of equations has exactly one real solution, the discriminant $b^2 - 4ac$ must be equal to 0.

$(-a+1)^2 - 4(1)(1) = 0$	$b^2 - 4ac = 0$
$a^2 - 2a + 1 - 4 = 0$	Simplify.
$a^2 - 2a - 3 = 0$	Simplify.
(a-3)(a+1) = 0	Factor.
a = 3 or $a = -1$	Solutions
a:	

Since a > 0, a = 3.

3. C

One can find the intersection points of the two graphs by setting the two functions f(x) and

g(x) equal to one another and then solving for x.

This yields $2x^2 + 2 = -2x^2 + 18$. Adding $2x^2 - 2$ to each side of the equation gives $4x^2 = 16$. Solving for x gives $x = \pm 2$.

 $f(2) = 2(2)^2 + 2 = 10$ and also f(-2) = 10. The two point of intersections are (2,10) and (-2,10). Therefore, the value of b is 10.

4. D

$x^2 + y^2 = 14$	First equation		
$x^2 - y = 2$	Second equation		
$x^2 = y + 2$	Second equation solved for x^2 .		
$y + 2 + y^2 = 14$	Substitute $y + 2$ for x^2 in		
	first equation.		
$y^2 + y - 12 = 0$	Make one side 0.		
(y+4)(y-3) = 0	Factor.		
y = -4 or $y = 3$	Solve for y .		
Substitute -4 and 3 for y and solve for x^2 .			
$x^2 = y + 2 = -4 + 2 = -2 \; .$			

Since x^2 cannot be negative, y = -4 is not a solution.

$$x^2 = y + 2 = 3 + 2 = 5$$

The value of x^2 is 5.

Chapter 11 Practice Test

1. B

The *x*-coordinate of the vertex is the average of the *x*-intercepts. Thus the *x*-coordinate of the vertex is $x = \frac{-2+6}{2} = 2$. The vertex form of the parabola can be written as $y = a(x-2)^2 + k$. Choices A and D are incorrect because the *x*-coordinate of the vertex is not 2. Also, the parabola passes through (0,6). Check choices B and C.

B)
$$y = -\frac{1}{2}(x-2)^2 + 8$$

 $6 = -\frac{1}{2}(0-2)^2 + 8$ Correct.
C) $y = -\frac{1}{2}(x-2)^2 + 9$
 $6 = -\frac{1}{2}(0-2)^2 + 9$ Not correct.

Choice B is correct.

2. C

$$(x + y)^{2} = 324 \implies x^{2} + 2xy + y^{2} = 324$$
$$x^{2} + y^{2} = 324 - 2xy$$
$$(x - y)^{2} = 16 \implies x^{2} - 2xy + y^{2} = 16$$
$$\implies x^{2} + y^{2} = 16 + 2xy$$

Substituting 16+2xy for $x^2 + y^2$ in the equation $x^2 + y^2 = 324 - 2xy$ yields 16+2xy = 324 - 2xy. Solving this equation for xy yields xy = 77.

3. A

From the graph we read the length of *AD*, which is 9. Let the length of *CD* = *w*. Perimeter of rectangle *ABCD* is 38. $2 \cdot 9 + 2w = 38 \implies 2w = 20 \implies w = 10$ Therefore, the coordinates of *B* are (-1,10) and the coordinates of *C* are (8,10). The equation of the parabola can be written in vertex form as $y = a(x-3)^2$. Now substitute 8 for *x* and 10 for *y* in the equation. $10 = a(8-3)^2$. Solving for *a* gives $a = \frac{10}{25} = \frac{2}{5}$. Choice A is correct.

4. A

 $(ax+b)(2x-5) = 12x^2 + kx - 10$

FOIL the left side of the equation. $2ax^2 + (-5a + 2b)x - 5b = 12x^2 + kx - 10$

By the definition of equal polynomials, 2a = 12, -5a + 2b = k, and 5b = 10. Thus, a = 6 and b = 2, and k = -5a + 2b = -5(6) + 2(2) = -26.

5. D

$$h = -\frac{1}{2}gt^2 + v_0t + h_0$$

In the equation, g = 9.8, initial height $h_0 = 40$, and initial speed $v_0 = 35$. Therefore, the equation of the motion is $h = -\frac{1}{2}(9.8)t^2 + 35t + 40$. Choice D is correct.

6. C

In the quadratic equation, $y = ax^2 + bx + c$, the *x*-coordinate of the maximum or minimum point is at $x = -\frac{b}{2a}$. Therefore, the object reaches its maximum height when $t = -\frac{35}{2(-4.9)} = \frac{25}{7}$.

7. A

The object reaches to its maximum height when

$$t = \frac{25}{7}$$
. So substitute $t = \frac{25}{7}$ in the equation
 $h = -4.9(\frac{25}{7})^2 + 35(\frac{25}{7}) + 40 = 102.5$

To the nearest meter, the object reaches a maximum height of 103 meters.

8. B

Height of the object is zero when the object hits the ground.

$$0 = -4.9t^2 + 35t + 40$$

Use quadratic formula to solve for t.

$$t = \frac{-35 \pm \sqrt{35^2 - 4(-4.9)(40)}}{2(-4.9)}$$
$$= \frac{-35 \pm \sqrt{2009}}{-9.8} \approx \frac{-35 \pm 44.82}{-9.8}$$

Solving for t gives $t \approx -1$ or $t \approx 8.1$. Since time cannot be negative, the object hits the ground about 8 seconds after it was thrown.

9. B

When an object hits the ground, h = 0. $h_0 = 150$ is given.

$$0 = -16t^{2} + 150$$

$$16t^{2} = 150$$

$$t^{2} = \frac{150}{16}$$

Substitution
Add $16t^{2}$ to each side.
Divide each side by 16.

$$t = \sqrt{\frac{150}{16}} \approx 3.06$$